437 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			437 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLASR applies a sequence of plane rotations to a general rectangular matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLASR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIRECT, PIVOT, SIDE
 | |
| *       INTEGER            LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               C( * ), S( * )
 | |
| *       COMPLEX            A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLASR applies a sequence of real plane rotations to a complex matrix
 | |
| *> A, from either the left or the right.
 | |
| *>
 | |
| *> When SIDE = 'L', the transformation takes the form
 | |
| *>
 | |
| *>    A := P*A
 | |
| *>
 | |
| *> and when SIDE = 'R', the transformation takes the form
 | |
| *>
 | |
| *>    A := A*P**T
 | |
| *>
 | |
| *> where P is an orthogonal matrix consisting of a sequence of z plane
 | |
| *> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
 | |
| *> and P**T is the transpose of P.
 | |
| *>
 | |
| *> When DIRECT = 'F' (Forward sequence), then
 | |
| *>
 | |
| *>    P = P(z-1) * ... * P(2) * P(1)
 | |
| *>
 | |
| *> and when DIRECT = 'B' (Backward sequence), then
 | |
| *>
 | |
| *>    P = P(1) * P(2) * ... * P(z-1)
 | |
| *>
 | |
| *> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
 | |
| *>
 | |
| *>    R(k) = (  c(k)  s(k) )
 | |
| *>         = ( -s(k)  c(k) ).
 | |
| *>
 | |
| *> When PIVOT = 'V' (Variable pivot), the rotation is performed
 | |
| *> for the plane (k,k+1), i.e., P(k) has the form
 | |
| *>
 | |
| *>    P(k) = (  1                                            )
 | |
| *>           (       ...                                     )
 | |
| *>           (              1                                )
 | |
| *>           (                   c(k)  s(k)                  )
 | |
| *>           (                  -s(k)  c(k)                  )
 | |
| *>           (                                1              )
 | |
| *>           (                                     ...       )
 | |
| *>           (                                            1  )
 | |
| *>
 | |
| *> where R(k) appears as a rank-2 modification to the identity matrix in
 | |
| *> rows and columns k and k+1.
 | |
| *>
 | |
| *> When PIVOT = 'T' (Top pivot), the rotation is performed for the
 | |
| *> plane (1,k+1), so P(k) has the form
 | |
| *>
 | |
| *>    P(k) = (  c(k)                    s(k)                 )
 | |
| *>           (         1                                     )
 | |
| *>           (              ...                              )
 | |
| *>           (                     1                         )
 | |
| *>           ( -s(k)                    c(k)                 )
 | |
| *>           (                                 1             )
 | |
| *>           (                                      ...      )
 | |
| *>           (                                             1 )
 | |
| *>
 | |
| *> where R(k) appears in rows and columns 1 and k+1.
 | |
| *>
 | |
| *> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
 | |
| *> performed for the plane (k,z), giving P(k) the form
 | |
| *>
 | |
| *>    P(k) = ( 1                                             )
 | |
| *>           (      ...                                      )
 | |
| *>           (             1                                 )
 | |
| *>           (                  c(k)                    s(k) )
 | |
| *>           (                         1                     )
 | |
| *>           (                              ...              )
 | |
| *>           (                                     1         )
 | |
| *>           (                 -s(k)                    c(k) )
 | |
| *>
 | |
| *> where R(k) appears in rows and columns k and z.  The rotations are
 | |
| *> performed without ever forming P(k) explicitly.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          Specifies whether the plane rotation matrix P is applied to
 | |
| *>          A on the left or the right.
 | |
| *>          = 'L':  Left, compute A := P*A
 | |
| *>          = 'R':  Right, compute A:= A*P**T
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PIVOT
 | |
| *> \verbatim
 | |
| *>          PIVOT is CHARACTER*1
 | |
| *>          Specifies the plane for which P(k) is a plane rotation
 | |
| *>          matrix.
 | |
| *>          = 'V':  Variable pivot, the plane (k,k+1)
 | |
| *>          = 'T':  Top pivot, the plane (1,k+1)
 | |
| *>          = 'B':  Bottom pivot, the plane (k,z)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIRECT
 | |
| *> \verbatim
 | |
| *>          DIRECT is CHARACTER*1
 | |
| *>          Specifies whether P is a forward or backward sequence of
 | |
| *>          plane rotations.
 | |
| *>          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
 | |
| *>          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  If m <= 1, an immediate
 | |
| *>          return is effected.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  If n <= 1, an
 | |
| *>          immediate return is effected.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension
 | |
| *>                  (M-1) if SIDE = 'L'
 | |
| *>                  (N-1) if SIDE = 'R'
 | |
| *>          The cosines c(k) of the plane rotations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension
 | |
| *>                  (M-1) if SIDE = 'L'
 | |
| *>                  (N-1) if SIDE = 'R'
 | |
| *>          The sines s(k) of the plane rotations.  The 2-by-2 plane
 | |
| *>          rotation part of the matrix P(k), R(k), has the form
 | |
| *>          R(k) = (  c(k)  s(k) )
 | |
| *>                 ( -s(k)  c(k) ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix A.  On exit, A is overwritten by P*A if
 | |
| *>          SIDE = 'R' or by A*P**T if SIDE = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIRECT, PIVOT, SIDE
 | |
|       INTEGER            LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               C( * ), S( * )
 | |
|       COMPLEX            A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J
 | |
|       REAL               CTEMP, STEMP
 | |
|       COMPLEX            TEMP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
 | |
|      $         'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
 | |
|      $          THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = 9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CLASR ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
 | |
|      $   RETURN
 | |
|       IF( LSAME( SIDE, 'L' ) ) THEN
 | |
| *
 | |
| *        Form  P * A
 | |
| *
 | |
|          IF( LSAME( PIVOT, 'V' ) ) THEN
 | |
|             IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|                DO 20 J = 1, M - 1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 10 I = 1, N
 | |
|                         TEMP = A( J+1, I )
 | |
|                         A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
 | |
|                         A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
 | |
|    10                CONTINUE
 | |
|                   END IF
 | |
|    20          CONTINUE
 | |
|             ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | |
|                DO 40 J = M - 1, 1, -1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 30 I = 1, N
 | |
|                         TEMP = A( J+1, I )
 | |
|                         A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
 | |
|                         A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
 | |
|    30                CONTINUE
 | |
|                   END IF
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
 | |
|             IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|                DO 60 J = 2, M
 | |
|                   CTEMP = C( J-1 )
 | |
|                   STEMP = S( J-1 )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 50 I = 1, N
 | |
|                         TEMP = A( J, I )
 | |
|                         A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
 | |
|                         A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
 | |
|    50                CONTINUE
 | |
|                   END IF
 | |
|    60          CONTINUE
 | |
|             ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | |
|                DO 80 J = M, 2, -1
 | |
|                   CTEMP = C( J-1 )
 | |
|                   STEMP = S( J-1 )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 70 I = 1, N
 | |
|                         TEMP = A( J, I )
 | |
|                         A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
 | |
|                         A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
 | |
|    70                CONTINUE
 | |
|                   END IF
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
 | |
|             IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|                DO 100 J = 1, M - 1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 90 I = 1, N
 | |
|                         TEMP = A( J, I )
 | |
|                         A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
 | |
|                         A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
 | |
|    90                CONTINUE
 | |
|                   END IF
 | |
|   100          CONTINUE
 | |
|             ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | |
|                DO 120 J = M - 1, 1, -1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 110 I = 1, N
 | |
|                         TEMP = A( J, I )
 | |
|                         A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
 | |
|                         A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
 | |
|   110                CONTINUE
 | |
|                   END IF
 | |
|   120          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | |
| *
 | |
| *        Form A * P**T
 | |
| *
 | |
|          IF( LSAME( PIVOT, 'V' ) ) THEN
 | |
|             IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|                DO 140 J = 1, N - 1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 130 I = 1, M
 | |
|                         TEMP = A( I, J+1 )
 | |
|                         A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
 | |
|                         A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
 | |
|   130                CONTINUE
 | |
|                   END IF
 | |
|   140          CONTINUE
 | |
|             ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | |
|                DO 160 J = N - 1, 1, -1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 150 I = 1, M
 | |
|                         TEMP = A( I, J+1 )
 | |
|                         A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
 | |
|                         A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
 | |
|   150                CONTINUE
 | |
|                   END IF
 | |
|   160          CONTINUE
 | |
|             END IF
 | |
|          ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
 | |
|             IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|                DO 180 J = 2, N
 | |
|                   CTEMP = C( J-1 )
 | |
|                   STEMP = S( J-1 )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 170 I = 1, M
 | |
|                         TEMP = A( I, J )
 | |
|                         A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
 | |
|                         A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
 | |
|   170                CONTINUE
 | |
|                   END IF
 | |
|   180          CONTINUE
 | |
|             ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | |
|                DO 200 J = N, 2, -1
 | |
|                   CTEMP = C( J-1 )
 | |
|                   STEMP = S( J-1 )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 190 I = 1, M
 | |
|                         TEMP = A( I, J )
 | |
|                         A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
 | |
|                         A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
 | |
|   190                CONTINUE
 | |
|                   END IF
 | |
|   200          CONTINUE
 | |
|             END IF
 | |
|          ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
 | |
|             IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|                DO 220 J = 1, N - 1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 210 I = 1, M
 | |
|                         TEMP = A( I, J )
 | |
|                         A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
 | |
|                         A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
 | |
|   210                CONTINUE
 | |
|                   END IF
 | |
|   220          CONTINUE
 | |
|             ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | |
|                DO 240 J = N - 1, 1, -1
 | |
|                   CTEMP = C( J )
 | |
|                   STEMP = S( J )
 | |
|                   IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | |
|                      DO 230 I = 1, M
 | |
|                         TEMP = A( I, J )
 | |
|                         A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
 | |
|                         A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
 | |
|   230                CONTINUE
 | |
|                   END IF
 | |
|   240          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLASR
 | |
| *
 | |
|       END
 |