297 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLARGV generates a vector of plane rotations with real cosines and complex sines.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLARGV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clargv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clargv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clargv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INCC, INCX, INCY, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               C( * )
 | |
| *       COMPLEX            X( * ), Y( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLARGV generates a vector of complex plane rotations with real
 | |
| *> cosines, determined by elements of the complex vectors x and y.
 | |
| *> For i = 1,2,...,n
 | |
| *>
 | |
| *>    (        c(i)   s(i) ) ( x(i) ) = ( r(i) )
 | |
| *>    ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  )
 | |
| *>
 | |
| *>    where c(i)**2 + ABS(s(i))**2 = 1
 | |
| *>
 | |
| *> The following conventions are used (these are the same as in CLARTG,
 | |
| *> but differ from the BLAS1 routine CROTG):
 | |
| *>    If y(i)=0, then c(i)=1 and s(i)=0.
 | |
| *>    If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of plane rotations to be generated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (1+(N-1)*INCX)
 | |
| *>          On entry, the vector x.
 | |
| *>          On exit, x(i) is overwritten by r(i), for i = 1,...,n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>          The increment between elements of X. INCX > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX array, dimension (1+(N-1)*INCY)
 | |
| *>          On entry, the vector y.
 | |
| *>          On exit, the sines of the plane rotations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>          The increment between elements of Y. INCY > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (1+(N-1)*INCC)
 | |
| *>          The cosines of the plane rotations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCC
 | |
| *> \verbatim
 | |
| *>          INCC is INTEGER
 | |
| *>          The increment between elements of C. INCC > 0.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel
 | |
| *>
 | |
| *>  This version has a few statements commented out for thread safety
 | |
| *>  (machine parameters are computed on each entry). 10 feb 03, SJH.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCC, INCX, INCY, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               C( * )
 | |
|       COMPLEX            X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               TWO, ONE, ZERO
 | |
|       PARAMETER          ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
|       COMPLEX            CZERO
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
| *     LOGICAL            FIRST
 | |
|       INTEGER            COUNT, I, IC, IX, IY, J
 | |
|       REAL               CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
 | |
|      $                   SAFMN2, SAFMX2, SCALE
 | |
|       COMPLEX            F, FF, FS, G, GS, R, SN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLAPY2
 | |
|       EXTERNAL           SLAMCH, SLAPY2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
 | |
|      $                   SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               ABS1, ABSSQ
 | |
| *     ..
 | |
| *     .. Save statement ..
 | |
| *     SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
| *     DATA               FIRST / .TRUE. /
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
 | |
|       ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     IF( FIRST ) THEN
 | |
| *        FIRST = .FALSE.
 | |
|          SAFMIN = SLAMCH( 'S' )
 | |
|          EPS = SLAMCH( 'E' )
 | |
|          SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
 | |
|      $            LOG( SLAMCH( 'B' ) ) / TWO )
 | |
|          SAFMX2 = ONE / SAFMN2
 | |
| *     END IF
 | |
|       IX = 1
 | |
|       IY = 1
 | |
|       IC = 1
 | |
|       DO 60 I = 1, N
 | |
|          F = X( IX )
 | |
|          G = Y( IY )
 | |
| *
 | |
| *        Use identical algorithm as in CLARTG
 | |
| *
 | |
|          SCALE = MAX( ABS1( F ), ABS1( G ) )
 | |
|          FS = F
 | |
|          GS = G
 | |
|          COUNT = 0
 | |
|          IF( SCALE.GE.SAFMX2 ) THEN
 | |
|    10       CONTINUE
 | |
|             COUNT = COUNT + 1
 | |
|             FS = FS*SAFMN2
 | |
|             GS = GS*SAFMN2
 | |
|             SCALE = SCALE*SAFMN2
 | |
|             IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20 )
 | |
|      $         GO TO 10
 | |
|          ELSE IF( SCALE.LE.SAFMN2 ) THEN
 | |
|             IF( G.EQ.CZERO ) THEN
 | |
|                CS = ONE
 | |
|                SN = CZERO
 | |
|                R = F
 | |
|                GO TO 50
 | |
|             END IF
 | |
|    20       CONTINUE
 | |
|             COUNT = COUNT - 1
 | |
|             FS = FS*SAFMX2
 | |
|             GS = GS*SAFMX2
 | |
|             SCALE = SCALE*SAFMX2
 | |
|             IF( SCALE.LE.SAFMN2 )
 | |
|      $         GO TO 20
 | |
|          END IF
 | |
|          F2 = ABSSQ( FS )
 | |
|          G2 = ABSSQ( GS )
 | |
|          IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
 | |
| *
 | |
| *           This is a rare case: F is very small.
 | |
| *
 | |
|             IF( F.EQ.CZERO ) THEN
 | |
|                CS = ZERO
 | |
|                R = SLAPY2( REAL( G ), AIMAG( G ) )
 | |
| *              Do complex/real division explicitly with two real
 | |
| *              divisions
 | |
|                D = SLAPY2( REAL( GS ), AIMAG( GS ) )
 | |
|                SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
 | |
|                GO TO 50
 | |
|             END IF
 | |
|             F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
 | |
| *           G2 and G2S are accurate
 | |
| *           G2 is at least SAFMIN, and G2S is at least SAFMN2
 | |
|             G2S = SQRT( G2 )
 | |
| *           Error in CS from underflow in F2S is at most
 | |
| *           UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
 | |
| *           If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
 | |
| *           and so CS .lt. sqrt(SAFMIN)
 | |
| *           If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
 | |
| *           and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
 | |
| *           Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
 | |
|             CS = F2S / G2S
 | |
| *           Make sure abs(FF) = 1
 | |
| *           Do complex/real division explicitly with 2 real divisions
 | |
|             IF( ABS1( F ).GT.ONE ) THEN
 | |
|                D = SLAPY2( REAL( F ), AIMAG( F ) )
 | |
|                FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
 | |
|             ELSE
 | |
|                DR = SAFMX2*REAL( F )
 | |
|                DI = SAFMX2*AIMAG( F )
 | |
|                D = SLAPY2( DR, DI )
 | |
|                FF = CMPLX( DR / D, DI / D )
 | |
|             END IF
 | |
|             SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
 | |
|             R = CS*F + SN*G
 | |
|          ELSE
 | |
| *
 | |
| *           This is the most common case.
 | |
| *           Neither F2 nor F2/G2 are less than SAFMIN
 | |
| *           F2S cannot overflow, and it is accurate
 | |
| *
 | |
|             F2S = SQRT( ONE+G2 / F2 )
 | |
| *           Do the F2S(real)*FS(complex) multiply with two real
 | |
| *           multiplies
 | |
|             R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
 | |
|             CS = ONE / F2S
 | |
|             D = F2 + G2
 | |
| *           Do complex/real division explicitly with two real divisions
 | |
|             SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
 | |
|             SN = SN*CONJG( GS )
 | |
|             IF( COUNT.NE.0 ) THEN
 | |
|                IF( COUNT.GT.0 ) THEN
 | |
|                   DO 30 J = 1, COUNT
 | |
|                      R = R*SAFMX2
 | |
|    30             CONTINUE
 | |
|                ELSE
 | |
|                   DO 40 J = 1, -COUNT
 | |
|                      R = R*SAFMN2
 | |
|    40             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|    50    CONTINUE
 | |
|          C( IC ) = CS
 | |
|          Y( IY ) = SN
 | |
|          X( IX ) = R
 | |
|          IC = IC + INCC
 | |
|          IY = IY + INCY
 | |
|          IX = IX + INCX
 | |
|    60 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLARGV
 | |
| *
 | |
|       END
 |