326 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLARFT forms the triangular factor T of a block reflector H = I - vtvH
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLARFT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIRECT, STOREV
 | |
| *       INTEGER            K, LDT, LDV, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            T( LDT, * ), TAU( * ), V( LDV, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLARFT forms the triangular factor T of a complex block reflector H
 | |
| *> of order n, which is defined as a product of k elementary reflectors.
 | |
| *>
 | |
| *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
 | |
| *>
 | |
| *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
 | |
| *>
 | |
| *> If STOREV = 'C', the vector which defines the elementary reflector
 | |
| *> H(i) is stored in the i-th column of the array V, and
 | |
| *>
 | |
| *>    H  =  I - V * T * V**H
 | |
| *>
 | |
| *> If STOREV = 'R', the vector which defines the elementary reflector
 | |
| *> H(i) is stored in the i-th row of the array V, and
 | |
| *>
 | |
| *>    H  =  I - V**H * T * V
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DIRECT
 | |
| *> \verbatim
 | |
| *>          DIRECT is CHARACTER*1
 | |
| *>          Specifies the order in which the elementary reflectors are
 | |
| *>          multiplied to form the block reflector:
 | |
| *>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
 | |
| *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] STOREV
 | |
| *> \verbatim
 | |
| *>          STOREV is CHARACTER*1
 | |
| *>          Specifies how the vectors which define the elementary
 | |
| *>          reflectors are stored (see also Further Details):
 | |
| *>          = 'C': columnwise
 | |
| *>          = 'R': rowwise
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the block reflector H. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The order of the triangular factor T (= the number of
 | |
| *>          elementary reflectors). K >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension
 | |
| *>                               (LDV,K) if STOREV = 'C'
 | |
| *>                               (LDV,N) if STOREV = 'R'
 | |
| *>          The matrix V. See further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V.
 | |
| *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX array, dimension (K)
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDT,K)
 | |
| *>          The k by k triangular factor T of the block reflector.
 | |
| *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
 | |
| *>          lower triangular. The rest of the array is not used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= K.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The shape of the matrix V and the storage of the vectors which define
 | |
| *>  the H(i) is best illustrated by the following example with n = 5 and
 | |
| *>  k = 3. The elements equal to 1 are not stored.
 | |
| *>
 | |
| *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
 | |
| *>
 | |
| *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
 | |
| *>                   ( v1  1    )                     (     1 v2 v2 v2 )
 | |
| *>                   ( v1 v2  1 )                     (        1 v3 v3 )
 | |
| *>                   ( v1 v2 v3 )
 | |
| *>                   ( v1 v2 v3 )
 | |
| *>
 | |
| *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
 | |
| *>
 | |
| *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
 | |
| *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
 | |
| *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
 | |
| *>                   (     1 v3 )
 | |
| *>                   (        1 )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIRECT, STOREV
 | |
|       INTEGER            K, LDT, LDV, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            T( LDT, * ), TAU( * ), V( LDV, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE, ZERO
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | |
|      $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, PREVLASTV, LASTV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CGEMV, CTRMV
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( LSAME( DIRECT, 'F' ) ) THEN
 | |
|          PREVLASTV = N
 | |
|          DO I = 1, K
 | |
|             PREVLASTV = MAX( PREVLASTV, I )
 | |
|             IF( TAU( I ).EQ.ZERO ) THEN
 | |
| *
 | |
| *              H(i)  =  I
 | |
| *
 | |
|                DO J = 1, I
 | |
|                   T( J, I ) = ZERO
 | |
|                END DO
 | |
|             ELSE
 | |
| *
 | |
| *              general case
 | |
| *
 | |
|                IF( LSAME( STOREV, 'C' ) ) THEN
 | |
| *                 Skip any trailing zeros.
 | |
|                   DO LASTV = N, I+1, -1
 | |
|                      IF( V( LASTV, I ).NE.ZERO ) EXIT
 | |
|                   END DO
 | |
|                   DO J = 1, I-1
 | |
|                      T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )
 | |
|                   END DO
 | |
|                   J = MIN( LASTV, PREVLASTV )
 | |
| *
 | |
| *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
 | |
| *
 | |
|                   CALL CGEMV( 'Conjugate transpose', J-I, I-1,
 | |
|      $                        -TAU( I ), V( I+1, 1 ), LDV,
 | |
|      $                        V( I+1, I ), 1,
 | |
|      $                        ONE, T( 1, I ), 1 )
 | |
|                ELSE
 | |
| *                 Skip any trailing zeros.
 | |
|                   DO LASTV = N, I+1, -1
 | |
|                      IF( V( I, LASTV ).NE.ZERO ) EXIT
 | |
|                   END DO
 | |
|                   DO J = 1, I-1
 | |
|                      T( J, I ) = -TAU( I ) * V( J , I )
 | |
|                   END DO
 | |
|                   J = MIN( LASTV, PREVLASTV )
 | |
| *
 | |
| *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
 | |
| *
 | |
|                   CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),
 | |
|      $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
 | |
|      $                        ONE, T( 1, I ), LDT )
 | |
|                END IF
 | |
| *
 | |
| *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
 | |
| *
 | |
|                CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
 | |
|      $                     LDT, T( 1, I ), 1 )
 | |
|                T( I, I ) = TAU( I )
 | |
|                IF( I.GT.1 ) THEN
 | |
|                   PREVLASTV = MAX( PREVLASTV, LASTV )
 | |
|                ELSE
 | |
|                   PREVLASTV = LASTV
 | |
|                END IF
 | |
|             END IF
 | |
|          END DO
 | |
|       ELSE
 | |
|          PREVLASTV = 1
 | |
|          DO I = K, 1, -1
 | |
|             IF( TAU( I ).EQ.ZERO ) THEN
 | |
| *
 | |
| *              H(i)  =  I
 | |
| *
 | |
|                DO J = I, K
 | |
|                   T( J, I ) = ZERO
 | |
|                END DO
 | |
|             ELSE
 | |
| *
 | |
| *              general case
 | |
| *
 | |
|                IF( I.LT.K ) THEN
 | |
|                   IF( LSAME( STOREV, 'C' ) ) THEN
 | |
| *                    Skip any leading zeros.
 | |
|                      DO LASTV = 1, I-1
 | |
|                         IF( V( LASTV, I ).NE.ZERO ) EXIT
 | |
|                      END DO
 | |
|                      DO J = I+1, K
 | |
|                         T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )
 | |
|                      END DO
 | |
|                      J = MAX( LASTV, PREVLASTV )
 | |
| *
 | |
| *                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
 | |
| *
 | |
|                      CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I,
 | |
|      $                           -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
 | |
|      $                           1, ONE, T( I+1, I ), 1 )
 | |
|                   ELSE
 | |
| *                    Skip any leading zeros.
 | |
|                      DO LASTV = 1, I-1
 | |
|                         IF( V( I, LASTV ).NE.ZERO ) EXIT
 | |
|                      END DO
 | |
|                      DO J = I+1, K
 | |
|                         T( J, I ) = -TAU( I ) * V( J, N-K+I )
 | |
|                      END DO
 | |
|                      J = MAX( LASTV, PREVLASTV )
 | |
| *
 | |
| *                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ),
 | |
|      $                           V( I+1, J ), LDV, V( I, J ), LDV,
 | |
|      $                           ONE, T( I+1, I ), LDT )
 | |
|                   END IF
 | |
| *
 | |
| *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
 | |
| *
 | |
|                   CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
 | |
|      $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
 | |
|                   IF( I.GT.1 ) THEN
 | |
|                      PREVLASTV = MIN( PREVLASTV, LASTV )
 | |
|                   ELSE
 | |
|                      PREVLASTV = LASTV
 | |
|                   END IF
 | |
|                END IF
 | |
|                T( I, I ) = TAU( I )
 | |
|             END IF
 | |
|          END DO
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLARFT
 | |
| *
 | |
|       END
 |