206 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLANGT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clangt.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clangt.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clangt.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL             FUNCTION CLANGT( NORM, N, DL, D, DU )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            D( * ), DL( * ), DU( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLANGT  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the  element of  largest absolute value  of a
 | |
| *> complex tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return CLANGT
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in CLANGT as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.  When N = 0, CLANGT is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DL
 | |
| *> \verbatim
 | |
| *>          DL is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) sub-diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension (N)
 | |
| *>          The diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU
 | |
| *> \verbatim
 | |
| *>          DU is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) super-diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL             FUNCTION CLANGT( NORM, N, DL, D, DU )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            D( * ), DL( * ), DU( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       REAL               ANORM, SCALE, SUM, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, SISNAN
 | |
|       EXTERNAL           LSAME, SISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          ANORM = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          ANORM = ABS( D( N ) )
 | |
|          DO 10 I = 1, N - 1
 | |
|             IF( ANORM.LT.ABS( DL( I ) ) .OR. SISNAN( ABS( DL( I ) ) ) )
 | |
|      $           ANORM = ABS(DL(I))
 | |
|             IF( ANORM.LT.ABS( D( I ) ) .OR. SISNAN( ABS( D( I ) ) ) )
 | |
|      $           ANORM = ABS(D(I))
 | |
|             IF( ANORM.LT.ABS( DU( I ) ) .OR. SISNAN (ABS( DU( I ) ) ) )
 | |
|      $           ANORM = ABS(DU(I))
 | |
|    10    CONTINUE
 | |
|       ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
 | |
| *
 | |
| *        Find norm1(A).
 | |
| *
 | |
|          IF( N.EQ.1 ) THEN
 | |
|             ANORM = ABS( D( 1 ) )
 | |
|          ELSE
 | |
|             ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
 | |
|             TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
 | |
|             IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
 | |
|             DO 20 I = 2, N - 1
 | |
|                TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
 | |
|                IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | |
| *
 | |
| *        Find normI(A).
 | |
| *
 | |
|          IF( N.EQ.1 ) THEN
 | |
|             ANORM = ABS( D( 1 ) )
 | |
|          ELSE
 | |
|             ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
 | |
|             TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
 | |
|             IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
 | |
|             DO 30 I = 2, N - 1
 | |
|                TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
 | |
|                IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
 | |
|    30       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *
 | |
|          SCALE = ZERO
 | |
|          SUM = ONE
 | |
|          CALL CLASSQ( N, D, 1, SCALE, SUM )
 | |
|          IF( N.GT.1 ) THEN
 | |
|             CALL CLASSQ( N-1, DL, 1, SCALE, SUM )
 | |
|             CALL CLASSQ( N-1, DU, 1, SCALE, SUM )
 | |
|          END IF
 | |
|          ANORM = SCALE*SQRT( SUM )
 | |
|       END IF
 | |
| *
 | |
|       CLANGT = ANORM
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLANGT
 | |
| *
 | |
|       END
 |