682 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			682 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLALSD uses the singular value decomposition of A to solve the least squares problem.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLALSD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clalsd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clalsd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clalsd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
 | |
| *                          RANK, WORK, RWORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 | |
| *       REAL               RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               D( * ), E( * ), RWORK( * )
 | |
| *       COMPLEX            B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLALSD uses the singular value decomposition of A to solve the least
 | |
| *> squares problem of finding X to minimize the Euclidean norm of each
 | |
| *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
 | |
| *> are N-by-NRHS. The solution X overwrites B.
 | |
| *>
 | |
| *> The singular values of A smaller than RCOND times the largest
 | |
| *> singular value are treated as zero in solving the least squares
 | |
| *> problem; in this case a minimum norm solution is returned.
 | |
| *> The actual singular values are returned in D in ascending order.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>         = 'U': D and E define an upper bidiagonal matrix.
 | |
| *>         = 'L': D and E define a  lower bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SMLSIZ
 | |
| *> \verbatim
 | |
| *>          SMLSIZ is INTEGER
 | |
| *>         The maximum size of the subproblems at the bottom of the
 | |
| *>         computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the  bidiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>         The number of columns of B. NRHS must be at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>         On entry D contains the main diagonal of the bidiagonal
 | |
| *>         matrix. On exit, if INFO = 0, D contains its singular values.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>         Contains the super-diagonal entries of the bidiagonal matrix.
 | |
| *>         On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>         On input, B contains the right hand sides of the least
 | |
| *>         squares problem. On output, B contains the solution X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>         The leading dimension of B in the calling subprogram.
 | |
| *>         LDB must be at least max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>         The singular values of A less than or equal to RCOND times
 | |
| *>         the largest singular value are treated as zero in solving
 | |
| *>         the least squares problem. If RCOND is negative,
 | |
| *>         machine precision is used instead.
 | |
| *>         For example, if diag(S)*X=B were the least squares problem,
 | |
| *>         where diag(S) is a diagonal matrix of singular values, the
 | |
| *>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
 | |
| *>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
 | |
| *>         RCOND*max(S).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>         The number of singular values of A greater than RCOND times
 | |
| *>         the largest singular value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N * NRHS).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension at least
 | |
| *>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
 | |
| *>         MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ),
 | |
| *>         where
 | |
| *>         NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (3*N*NLVL + 11*N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>         = 0:  successful exit.
 | |
| *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>         > 0:  The algorithm failed to compute a singular value while
 | |
| *>               working on the submatrix lying in rows and columns
 | |
| *>               INFO/(N+1) through MOD(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
 | |
|      $                   RANK, WORK, RWORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 | |
|       REAL               RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               D( * ), E( * ), RWORK( * )
 | |
|       COMPLEX            B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
 | |
|       COMPLEX            CZERO
 | |
|       PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
 | |
|      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
 | |
|      $                   IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
 | |
|      $                   JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
 | |
|      $                   PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
 | |
|      $                   U, VT, Z
 | |
|       REAL               CS, EPS, ORGNRM, R, RCND, SN, TOL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SLAMCH, SLANST
 | |
|       EXTERNAL           ISAMAX, SLAMCH, SLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CLACPY, CLALSA, CLASCL, CLASET, CSROT,
 | |
|      $                   SGEMM, SLARTG, SLASCL, SLASDA, SLASDQ, SLASET,
 | |
|      $                   SLASRT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, INT, LOG, REAL, SIGN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CLALSD', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Set up the tolerance.
 | |
| *
 | |
|       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
 | |
|          RCND = EPS
 | |
|       ELSE
 | |
|          RCND = RCOND
 | |
|       END IF
 | |
| *
 | |
|       RANK = 0
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.1 ) THEN
 | |
|          IF( D( 1 ).EQ.ZERO ) THEN
 | |
|             CALL CLASET( 'A', 1, NRHS, CZERO, CZERO, B, LDB )
 | |
|          ELSE
 | |
|             RANK = 1
 | |
|             CALL CLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
 | |
|             D( 1 ) = ABS( D( 1 ) )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Rotate the matrix if it is lower bidiagonal.
 | |
| *
 | |
|       IF( UPLO.EQ.'L' ) THEN
 | |
|          DO 10 I = 1, N - 1
 | |
|             CALL SLARTG( D( I ), E( I ), CS, SN, R )
 | |
|             D( I ) = R
 | |
|             E( I ) = SN*D( I+1 )
 | |
|             D( I+1 ) = CS*D( I+1 )
 | |
|             IF( NRHS.EQ.1 ) THEN
 | |
|                CALL CSROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
 | |
|             ELSE
 | |
|                RWORK( I*2-1 ) = CS
 | |
|                RWORK( I*2 ) = SN
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|          IF( NRHS.GT.1 ) THEN
 | |
|             DO 30 I = 1, NRHS
 | |
|                DO 20 J = 1, N - 1
 | |
|                   CS = RWORK( J*2-1 )
 | |
|                   SN = RWORK( J*2 )
 | |
|                   CALL CSROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
 | |
|    20          CONTINUE
 | |
|    30       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Scale.
 | |
| *
 | |
|       NM1 = N - 1
 | |
|       ORGNRM = SLANST( 'M', N, D, E )
 | |
|       IF( ORGNRM.EQ.ZERO ) THEN
 | |
|          CALL CLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
 | |
|       CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
 | |
| *
 | |
| *     If N is smaller than the minimum divide size SMLSIZ, then solve
 | |
| *     the problem with another solver.
 | |
| *
 | |
|       IF( N.LE.SMLSIZ ) THEN
 | |
|          IRWU = 1
 | |
|          IRWVT = IRWU + N*N
 | |
|          IRWWRK = IRWVT + N*N
 | |
|          IRWRB = IRWWRK
 | |
|          IRWIB = IRWRB + N*NRHS
 | |
|          IRWB = IRWIB + N*NRHS
 | |
|          CALL SLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
 | |
|          CALL SLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
 | |
|          CALL SLASDQ( 'U', 0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
 | |
|      $                RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
 | |
|      $                RWORK( IRWWRK ), INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        In the real version, B is passed to SLASDQ and multiplied
 | |
| *        internally by Q**H. Here B is complex and that product is
 | |
| *        computed below in two steps (real and imaginary parts).
 | |
| *
 | |
|          J = IRWB - 1
 | |
|          DO 50 JCOL = 1, NRHS
 | |
|             DO 40 JROW = 1, N
 | |
|                J = J + 1
 | |
|                RWORK( J ) = REAL( B( JROW, JCOL ) )
 | |
|    40       CONTINUE
 | |
|    50    CONTINUE
 | |
|          CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
 | |
|      $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
 | |
|          J = IRWB - 1
 | |
|          DO 70 JCOL = 1, NRHS
 | |
|             DO 60 JROW = 1, N
 | |
|                J = J + 1
 | |
|                RWORK( J ) = AIMAG( B( JROW, JCOL ) )
 | |
|    60       CONTINUE
 | |
|    70    CONTINUE
 | |
|          CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
 | |
|      $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
 | |
|          JREAL = IRWRB - 1
 | |
|          JIMAG = IRWIB - 1
 | |
|          DO 90 JCOL = 1, NRHS
 | |
|             DO 80 JROW = 1, N
 | |
|                JREAL = JREAL + 1
 | |
|                JIMAG = JIMAG + 1
 | |
|                B( JROW, JCOL ) = CMPLX( RWORK( JREAL ), RWORK( JIMAG ) )
 | |
|    80       CONTINUE
 | |
|    90    CONTINUE
 | |
| *
 | |
|          TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
 | |
|          DO 100 I = 1, N
 | |
|             IF( D( I ).LE.TOL ) THEN
 | |
|                CALL CLASET( 'A', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
 | |
|             ELSE
 | |
|                CALL CLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
 | |
|      $                      LDB, INFO )
 | |
|                RANK = RANK + 1
 | |
|             END IF
 | |
|   100    CONTINUE
 | |
| *
 | |
| *        Since B is complex, the following call to SGEMM is performed
 | |
| *        in two steps (real and imaginary parts). That is for V * B
 | |
| *        (in the real version of the code V**H is stored in WORK).
 | |
| *
 | |
| *        CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
 | |
| *    $               WORK( NWORK ), N )
 | |
| *
 | |
|          J = IRWB - 1
 | |
|          DO 120 JCOL = 1, NRHS
 | |
|             DO 110 JROW = 1, N
 | |
|                J = J + 1
 | |
|                RWORK( J ) = REAL( B( JROW, JCOL ) )
 | |
|   110       CONTINUE
 | |
|   120    CONTINUE
 | |
|          CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
 | |
|      $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
 | |
|          J = IRWB - 1
 | |
|          DO 140 JCOL = 1, NRHS
 | |
|             DO 130 JROW = 1, N
 | |
|                J = J + 1
 | |
|                RWORK( J ) = AIMAG( B( JROW, JCOL ) )
 | |
|   130       CONTINUE
 | |
|   140    CONTINUE
 | |
|          CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
 | |
|      $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
 | |
|          JREAL = IRWRB - 1
 | |
|          JIMAG = IRWIB - 1
 | |
|          DO 160 JCOL = 1, NRHS
 | |
|             DO 150 JROW = 1, N
 | |
|                JREAL = JREAL + 1
 | |
|                JIMAG = JIMAG + 1
 | |
|                B( JROW, JCOL ) = CMPLX( RWORK( JREAL ), RWORK( JIMAG ) )
 | |
|   150       CONTINUE
 | |
|   160    CONTINUE
 | |
| *
 | |
| *        Unscale.
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | |
|          CALL SLASRT( 'D', N, D, INFO )
 | |
|          CALL CLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
 | |
| *
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Book-keeping and setting up some constants.
 | |
| *
 | |
|       NLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
 | |
| *
 | |
|       SMLSZP = SMLSIZ + 1
 | |
| *
 | |
|       U = 1
 | |
|       VT = 1 + SMLSIZ*N
 | |
|       DIFL = VT + SMLSZP*N
 | |
|       DIFR = DIFL + NLVL*N
 | |
|       Z = DIFR + NLVL*N*2
 | |
|       C = Z + NLVL*N
 | |
|       S = C + N
 | |
|       POLES = S + N
 | |
|       GIVNUM = POLES + 2*NLVL*N
 | |
|       NRWORK = GIVNUM + 2*NLVL*N
 | |
|       BX = 1
 | |
| *
 | |
|       IRWRB = NRWORK
 | |
|       IRWIB = IRWRB + SMLSIZ*NRHS
 | |
|       IRWB = IRWIB + SMLSIZ*NRHS
 | |
| *
 | |
|       SIZEI = 1 + N
 | |
|       K = SIZEI + N
 | |
|       GIVPTR = K + N
 | |
|       PERM = GIVPTR + N
 | |
|       GIVCOL = PERM + NLVL*N
 | |
|       IWK = GIVCOL + NLVL*N*2
 | |
| *
 | |
|       ST = 1
 | |
|       SQRE = 0
 | |
|       ICMPQ1 = 1
 | |
|       ICMPQ2 = 0
 | |
|       NSUB = 0
 | |
| *
 | |
|       DO 170 I = 1, N
 | |
|          IF( ABS( D( I ) ).LT.EPS ) THEN
 | |
|             D( I ) = SIGN( EPS, D( I ) )
 | |
|          END IF
 | |
|   170 CONTINUE
 | |
| *
 | |
|       DO 240 I = 1, NM1
 | |
|          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
 | |
|             NSUB = NSUB + 1
 | |
|             IWORK( NSUB ) = ST
 | |
| *
 | |
| *           Subproblem found. First determine its size and then
 | |
| *           apply divide and conquer on it.
 | |
| *
 | |
|             IF( I.LT.NM1 ) THEN
 | |
| *
 | |
| *              A subproblem with E(I) small for I < NM1.
 | |
| *
 | |
|                NSIZE = I - ST + 1
 | |
|                IWORK( SIZEI+NSUB-1 ) = NSIZE
 | |
|             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
 | |
| *
 | |
| *              A subproblem with E(NM1) not too small but I = NM1.
 | |
| *
 | |
|                NSIZE = N - ST + 1
 | |
|                IWORK( SIZEI+NSUB-1 ) = NSIZE
 | |
|             ELSE
 | |
| *
 | |
| *              A subproblem with E(NM1) small. This implies an
 | |
| *              1-by-1 subproblem at D(N), which is not solved
 | |
| *              explicitly.
 | |
| *
 | |
|                NSIZE = I - ST + 1
 | |
|                IWORK( SIZEI+NSUB-1 ) = NSIZE
 | |
|                NSUB = NSUB + 1
 | |
|                IWORK( NSUB ) = N
 | |
|                IWORK( SIZEI+NSUB-1 ) = 1
 | |
|                CALL CCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
 | |
|             END IF
 | |
|             ST1 = ST - 1
 | |
|             IF( NSIZE.EQ.1 ) THEN
 | |
| *
 | |
| *              This is a 1-by-1 subproblem and is not solved
 | |
| *              explicitly.
 | |
| *
 | |
|                CALL CCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
 | |
|             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
 | |
| *
 | |
| *              This is a small subproblem and is solved by SLASDQ.
 | |
| *
 | |
|                CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
 | |
|      $                      RWORK( VT+ST1 ), N )
 | |
|                CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
 | |
|      $                      RWORK( U+ST1 ), N )
 | |
|                CALL SLASDQ( 'U', 0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
 | |
|      $                      E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
 | |
|      $                      N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
 | |
|      $                      INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   RETURN
 | |
|                END IF
 | |
| *
 | |
| *              In the real version, B is passed to SLASDQ and multiplied
 | |
| *              internally by Q**H. Here B is complex and that product is
 | |
| *              computed below in two steps (real and imaginary parts).
 | |
| *
 | |
|                J = IRWB - 1
 | |
|                DO 190 JCOL = 1, NRHS
 | |
|                   DO 180 JROW = ST, ST + NSIZE - 1
 | |
|                      J = J + 1
 | |
|                      RWORK( J ) = REAL( B( JROW, JCOL ) )
 | |
|   180             CONTINUE
 | |
|   190          CONTINUE
 | |
|                CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | |
|      $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
 | |
|      $                     ZERO, RWORK( IRWRB ), NSIZE )
 | |
|                J = IRWB - 1
 | |
|                DO 210 JCOL = 1, NRHS
 | |
|                   DO 200 JROW = ST, ST + NSIZE - 1
 | |
|                      J = J + 1
 | |
|                      RWORK( J ) = AIMAG( B( JROW, JCOL ) )
 | |
|   200             CONTINUE
 | |
|   210          CONTINUE
 | |
|                CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | |
|      $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
 | |
|      $                     ZERO, RWORK( IRWIB ), NSIZE )
 | |
|                JREAL = IRWRB - 1
 | |
|                JIMAG = IRWIB - 1
 | |
|                DO 230 JCOL = 1, NRHS
 | |
|                   DO 220 JROW = ST, ST + NSIZE - 1
 | |
|                      JREAL = JREAL + 1
 | |
|                      JIMAG = JIMAG + 1
 | |
|                      B( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
 | |
|      $                                 RWORK( JIMAG ) )
 | |
|   220             CONTINUE
 | |
|   230          CONTINUE
 | |
| *
 | |
|                CALL CLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
 | |
|      $                      WORK( BX+ST1 ), N )
 | |
|             ELSE
 | |
| *
 | |
| *              A large problem. Solve it using divide and conquer.
 | |
| *
 | |
|                CALL SLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
 | |
|      $                      E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
 | |
|      $                      IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
 | |
|      $                      RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
 | |
|      $                      RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
 | |
|      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
 | |
|      $                      RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
 | |
|      $                      RWORK( S+ST1 ), RWORK( NRWORK ),
 | |
|      $                      IWORK( IWK ), INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   RETURN
 | |
|                END IF
 | |
|                BXST = BX + ST1
 | |
|                CALL CLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
 | |
|      $                      LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
 | |
|      $                      RWORK( VT+ST1 ), IWORK( K+ST1 ),
 | |
|      $                      RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
 | |
|      $                      RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
 | |
|      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
 | |
|      $                      IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
 | |
|      $                      RWORK( C+ST1 ), RWORK( S+ST1 ),
 | |
|      $                      RWORK( NRWORK ), IWORK( IWK ), INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   RETURN
 | |
|                END IF
 | |
|             END IF
 | |
|             ST = I + 1
 | |
|          END IF
 | |
|   240 CONTINUE
 | |
| *
 | |
| *     Apply the singular values and treat the tiny ones as zero.
 | |
| *
 | |
|       TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
 | |
| *
 | |
|       DO 250 I = 1, N
 | |
| *
 | |
| *        Some of the elements in D can be negative because 1-by-1
 | |
| *        subproblems were not solved explicitly.
 | |
| *
 | |
|          IF( ABS( D( I ) ).LE.TOL ) THEN
 | |
|             CALL CLASET( 'A', 1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
 | |
|          ELSE
 | |
|             RANK = RANK + 1
 | |
|             CALL CLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
 | |
|      $                   WORK( BX+I-1 ), N, INFO )
 | |
|          END IF
 | |
|          D( I ) = ABS( D( I ) )
 | |
|   250 CONTINUE
 | |
| *
 | |
| *     Now apply back the right singular vectors.
 | |
| *
 | |
|       ICMPQ2 = 1
 | |
|       DO 320 I = 1, NSUB
 | |
|          ST = IWORK( I )
 | |
|          ST1 = ST - 1
 | |
|          NSIZE = IWORK( SIZEI+I-1 )
 | |
|          BXST = BX + ST1
 | |
|          IF( NSIZE.EQ.1 ) THEN
 | |
|             CALL CCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
 | |
|          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
 | |
| *
 | |
| *           Since B and BX are complex, the following call to SGEMM
 | |
| *           is performed in two steps (real and imaginary parts).
 | |
| *
 | |
| *           CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | |
| *    $                  RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
 | |
| *    $                  B( ST, 1 ), LDB )
 | |
| *
 | |
|             J = BXST - N - 1
 | |
|             JREAL = IRWB - 1
 | |
|             DO 270 JCOL = 1, NRHS
 | |
|                J = J + N
 | |
|                DO 260 JROW = 1, NSIZE
 | |
|                   JREAL = JREAL + 1
 | |
|                   RWORK( JREAL ) = REAL( WORK( J+JROW ) )
 | |
|   260          CONTINUE
 | |
|   270       CONTINUE
 | |
|             CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | |
|      $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
 | |
|      $                  RWORK( IRWRB ), NSIZE )
 | |
|             J = BXST - N - 1
 | |
|             JIMAG = IRWB - 1
 | |
|             DO 290 JCOL = 1, NRHS
 | |
|                J = J + N
 | |
|                DO 280 JROW = 1, NSIZE
 | |
|                   JIMAG = JIMAG + 1
 | |
|                   RWORK( JIMAG ) = AIMAG( WORK( J+JROW ) )
 | |
|   280          CONTINUE
 | |
|   290       CONTINUE
 | |
|             CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | |
|      $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
 | |
|      $                  RWORK( IRWIB ), NSIZE )
 | |
|             JREAL = IRWRB - 1
 | |
|             JIMAG = IRWIB - 1
 | |
|             DO 310 JCOL = 1, NRHS
 | |
|                DO 300 JROW = ST, ST + NSIZE - 1
 | |
|                   JREAL = JREAL + 1
 | |
|                   JIMAG = JIMAG + 1
 | |
|                   B( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
 | |
|      $                              RWORK( JIMAG ) )
 | |
|   300          CONTINUE
 | |
|   310       CONTINUE
 | |
|          ELSE
 | |
|             CALL CLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
 | |
|      $                   B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
 | |
|      $                   RWORK( VT+ST1 ), IWORK( K+ST1 ),
 | |
|      $                   RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
 | |
|      $                   RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
 | |
|      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
 | |
|      $                   IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
 | |
|      $                   RWORK( C+ST1 ), RWORK( S+ST1 ),
 | |
|      $                   RWORK( NRWORK ), IWORK( IWK ), INFO )
 | |
|             IF( INFO.NE.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
|          END IF
 | |
|   320 CONTINUE
 | |
| *
 | |
| *     Unscale and sort the singular values.
 | |
| *
 | |
|       CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | |
|       CALL SLASRT( 'D', N, D, INFO )
 | |
|       CALL CLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLALSD
 | |
| *
 | |
|       END
 |