564 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			564 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLALS0 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clals0.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clals0.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clals0.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
 | |
| *                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
 | |
| *                          POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
 | |
| *      $                   LDGNUM, NL, NR, NRHS, SQRE
 | |
| *       REAL               C, S
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
 | |
| *       REAL               DIFL( * ), DIFR( LDGNUM, * ),
 | |
| *      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
 | |
| *      $                   RWORK( * ), Z( * )
 | |
| *       COMPLEX            B( LDB, * ), BX( LDBX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLALS0 applies back the multiplying factors of either the left or the
 | |
| *> right singular vector matrix of a diagonal matrix appended by a row
 | |
| *> to the right hand side matrix B in solving the least squares problem
 | |
| *> using the divide-and-conquer SVD approach.
 | |
| *>
 | |
| *> For the left singular vector matrix, three types of orthogonal
 | |
| *> matrices are involved:
 | |
| *>
 | |
| *> (1L) Givens rotations: the number of such rotations is GIVPTR; the
 | |
| *>      pairs of columns/rows they were applied to are stored in GIVCOL;
 | |
| *>      and the C- and S-values of these rotations are stored in GIVNUM.
 | |
| *>
 | |
| *> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
 | |
| *>      row, and for J=2:N, PERM(J)-th row of B is to be moved to the
 | |
| *>      J-th row.
 | |
| *>
 | |
| *> (3L) The left singular vector matrix of the remaining matrix.
 | |
| *>
 | |
| *> For the right singular vector matrix, four types of orthogonal
 | |
| *> matrices are involved:
 | |
| *>
 | |
| *> (1R) The right singular vector matrix of the remaining matrix.
 | |
| *>
 | |
| *> (2R) If SQRE = 1, one extra Givens rotation to generate the right
 | |
| *>      null space.
 | |
| *>
 | |
| *> (3R) The inverse transformation of (2L).
 | |
| *>
 | |
| *> (4R) The inverse transformation of (1L).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ICOMPQ
 | |
| *> \verbatim
 | |
| *>          ICOMPQ is INTEGER
 | |
| *>         Specifies whether singular vectors are to be computed in
 | |
| *>         factored form:
 | |
| *>         = 0: Left singular vector matrix.
 | |
| *>         = 1: Right singular vector matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NL
 | |
| *> \verbatim
 | |
| *>          NL is INTEGER
 | |
| *>         The row dimension of the upper block. NL >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NR
 | |
| *> \verbatim
 | |
| *>          NR is INTEGER
 | |
| *>         The row dimension of the lower block. NR >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>         = 0: the lower block is an NR-by-NR square matrix.
 | |
| *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
 | |
| *>
 | |
| *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
 | |
| *>         and column dimension M = N + SQRE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>         The number of columns of B and BX. NRHS must be at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension ( LDB, NRHS )
 | |
| *>         On input, B contains the right hand sides of the least
 | |
| *>         squares problem in rows 1 through M. On output, B contains
 | |
| *>         the solution X in rows 1 through N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>         The leading dimension of B. LDB must be at least
 | |
| *>         max(1,MAX( M, N ) ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BX
 | |
| *> \verbatim
 | |
| *>          BX is COMPLEX array, dimension ( LDBX, NRHS )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDBX
 | |
| *> \verbatim
 | |
| *>          LDBX is INTEGER
 | |
| *>         The leading dimension of BX.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PERM
 | |
| *> \verbatim
 | |
| *>          PERM is INTEGER array, dimension ( N )
 | |
| *>         The permutations (from deflation and sorting) applied
 | |
| *>         to the two blocks.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVPTR
 | |
| *> \verbatim
 | |
| *>          GIVPTR is INTEGER
 | |
| *>         The number of Givens rotations which took place in this
 | |
| *>         subproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVCOL
 | |
| *> \verbatim
 | |
| *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
 | |
| *>         Each pair of numbers indicates a pair of rows/columns
 | |
| *>         involved in a Givens rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDGCOL
 | |
| *> \verbatim
 | |
| *>          LDGCOL is INTEGER
 | |
| *>         The leading dimension of GIVCOL, must be at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVNUM
 | |
| *> \verbatim
 | |
| *>          GIVNUM is REAL array, dimension ( LDGNUM, 2 )
 | |
| *>         Each number indicates the C or S value used in the
 | |
| *>         corresponding Givens rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDGNUM
 | |
| *> \verbatim
 | |
| *>          LDGNUM is INTEGER
 | |
| *>         The leading dimension of arrays DIFR, POLES and
 | |
| *>         GIVNUM, must be at least K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] POLES
 | |
| *> \verbatim
 | |
| *>          POLES is REAL array, dimension ( LDGNUM, 2 )
 | |
| *>         On entry, POLES(1:K, 1) contains the new singular
 | |
| *>         values obtained from solving the secular equation, and
 | |
| *>         POLES(1:K, 2) is an array containing the poles in the secular
 | |
| *>         equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIFL
 | |
| *> \verbatim
 | |
| *>          DIFL is REAL array, dimension ( K ).
 | |
| *>         On entry, DIFL(I) is the distance between I-th updated
 | |
| *>         (undeflated) singular value and the I-th (undeflated) old
 | |
| *>         singular value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIFR
 | |
| *> \verbatim
 | |
| *>          DIFR is REAL array, dimension ( LDGNUM, 2 ).
 | |
| *>         On entry, DIFR(I, 1) contains the distances between I-th
 | |
| *>         updated (undeflated) singular value and the I+1-th
 | |
| *>         (undeflated) old singular value. And DIFR(I, 2) is the
 | |
| *>         normalizing factor for the I-th right singular vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension ( K )
 | |
| *>         Contain the components of the deflation-adjusted updating row
 | |
| *>         vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>         Contains the dimension of the non-deflated matrix,
 | |
| *>         This is the order of the related secular equation. 1 <= K <=N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is REAL
 | |
| *>         C contains garbage if SQRE =0 and the C-value of a Givens
 | |
| *>         rotation related to the right null space if SQRE = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is REAL
 | |
| *>         S contains garbage if SQRE =0 and the S-value of a Givens
 | |
| *>         rotation related to the right null space if SQRE = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension
 | |
| *>         ( K*(1+NRHS) + 2*NRHS )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
 | |
|      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
 | |
|      $                   POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
 | |
|      $                   LDGNUM, NL, NR, NRHS, SQRE
 | |
|       REAL               C, S
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
 | |
|       REAL               DIFL( * ), DIFR( LDGNUM, * ),
 | |
|      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
 | |
|      $                   RWORK( * ), Z( * )
 | |
|       COMPLEX            B( LDB, * ), BX( LDBX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO, NEGONE
 | |
|       PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0, NEGONE = -1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, JCOL, JROW, M, N, NLP1
 | |
|       REAL               DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CLACPY, CLASCL, CSROT, CSSCAL, SGEMV,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMC3, SNRM2
 | |
|       EXTERNAL           SLAMC3, SNRM2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          AIMAG, CMPLX, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       N = NL + NR + 1
 | |
| *
 | |
|       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NL.LT.1 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NR.LT.1 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( NRHS.LT.1 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.N ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDBX.LT.N ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( GIVPTR.LT.0 ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LDGCOL.LT.N ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LDGNUM.LT.N ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( K.LT.1 ) THEN
 | |
|          INFO = -20
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CLALS0', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       M = N + SQRE
 | |
|       NLP1 = NL + 1
 | |
| *
 | |
|       IF( ICOMPQ.EQ.0 ) THEN
 | |
| *
 | |
| *        Apply back orthogonal transformations from the left.
 | |
| *
 | |
| *        Step (1L): apply back the Givens rotations performed.
 | |
| *
 | |
|          DO 10 I = 1, GIVPTR
 | |
|             CALL CSROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
 | |
|      $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
 | |
|      $                  GIVNUM( I, 1 ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Step (2L): permute rows of B.
 | |
| *
 | |
|          CALL CCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
 | |
|          DO 20 I = 2, N
 | |
|             CALL CCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Step (3L): apply the inverse of the left singular vector
 | |
| *        matrix to BX.
 | |
| *
 | |
|          IF( K.EQ.1 ) THEN
 | |
|             CALL CCOPY( NRHS, BX, LDBX, B, LDB )
 | |
|             IF( Z( 1 ).LT.ZERO ) THEN
 | |
|                CALL CSSCAL( NRHS, NEGONE, B, LDB )
 | |
|             END IF
 | |
|          ELSE
 | |
|             DO 100 J = 1, K
 | |
|                DIFLJ = DIFL( J )
 | |
|                DJ = POLES( J, 1 )
 | |
|                DSIGJ = -POLES( J, 2 )
 | |
|                IF( J.LT.K ) THEN
 | |
|                   DIFRJ = -DIFR( J, 1 )
 | |
|                   DSIGJP = -POLES( J+1, 2 )
 | |
|                END IF
 | |
|                IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
 | |
|      $              THEN
 | |
|                   RWORK( J ) = ZERO
 | |
|                ELSE
 | |
|                   RWORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
 | |
|      $                         ( POLES( J, 2 )+DJ )
 | |
|                END IF
 | |
|                DO 30 I = 1, J - 1
 | |
|                   IF( ( Z( I ).EQ.ZERO ) .OR.
 | |
|      $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
 | |
|                      RWORK( I ) = ZERO
 | |
|                   ELSE
 | |
| *
 | |
| *                    Use calls to the subroutine SLAMC3 to enforce the
 | |
| *                    parentheses (x+y)+z. The goal is to prevent
 | |
| *                    optimizing compilers from doing x+(y+z).
 | |
| *
 | |
|                      RWORK( I ) = POLES( I, 2 )*Z( I ) /
 | |
|      $                            ( SLAMC3( POLES( I, 2 ), DSIGJ )-
 | |
|      $                            DIFLJ ) / ( POLES( I, 2 )+DJ )
 | |
|                   END IF
 | |
|    30          CONTINUE
 | |
|                DO 40 I = J + 1, K
 | |
|                   IF( ( Z( I ).EQ.ZERO ) .OR.
 | |
|      $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
 | |
|                      RWORK( I ) = ZERO
 | |
|                   ELSE
 | |
|                      RWORK( I ) = POLES( I, 2 )*Z( I ) /
 | |
|      $                            ( SLAMC3( POLES( I, 2 ), DSIGJP )+
 | |
|      $                            DIFRJ ) / ( POLES( I, 2 )+DJ )
 | |
|                   END IF
 | |
|    40          CONTINUE
 | |
|                RWORK( 1 ) = NEGONE
 | |
|                TEMP = SNRM2( K, RWORK, 1 )
 | |
| *
 | |
| *              Since B and BX are complex, the following call to SGEMV
 | |
| *              is performed in two steps (real and imaginary parts).
 | |
| *
 | |
| *              CALL SGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
 | |
| *    $                     B( J, 1 ), LDB )
 | |
| *
 | |
|                I = K + NRHS*2
 | |
|                DO 60 JCOL = 1, NRHS
 | |
|                   DO 50 JROW = 1, K
 | |
|                      I = I + 1
 | |
|                      RWORK( I ) = REAL( BX( JROW, JCOL ) )
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|                CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | |
|      $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
 | |
|                I = K + NRHS*2
 | |
|                DO 80 JCOL = 1, NRHS
 | |
|                   DO 70 JROW = 1, K
 | |
|                      I = I + 1
 | |
|                      RWORK( I ) = AIMAG( BX( JROW, JCOL ) )
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|                CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | |
|      $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
 | |
|                DO 90 JCOL = 1, NRHS
 | |
|                   B( J, JCOL ) = CMPLX( RWORK( JCOL+K ),
 | |
|      $                           RWORK( JCOL+K+NRHS ) )
 | |
|    90          CONTINUE
 | |
|                CALL CLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
 | |
|      $                      LDB, INFO )
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Move the deflated rows of BX to B also.
 | |
| *
 | |
|          IF( K.LT.MAX( M, N ) )
 | |
|      $      CALL CLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
 | |
|      $                   B( K+1, 1 ), LDB )
 | |
|       ELSE
 | |
| *
 | |
| *        Apply back the right orthogonal transformations.
 | |
| *
 | |
| *        Step (1R): apply back the new right singular vector matrix
 | |
| *        to B.
 | |
| *
 | |
|          IF( K.EQ.1 ) THEN
 | |
|             CALL CCOPY( NRHS, B, LDB, BX, LDBX )
 | |
|          ELSE
 | |
|             DO 180 J = 1, K
 | |
|                DSIGJ = POLES( J, 2 )
 | |
|                IF( Z( J ).EQ.ZERO ) THEN
 | |
|                   RWORK( J ) = ZERO
 | |
|                ELSE
 | |
|                   RWORK( J ) = -Z( J ) / DIFL( J ) /
 | |
|      $                         ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
 | |
|                END IF
 | |
|                DO 110 I = 1, J - 1
 | |
|                   IF( Z( J ).EQ.ZERO ) THEN
 | |
|                      RWORK( I ) = ZERO
 | |
|                   ELSE
 | |
| *
 | |
| *                    Use calls to the subroutine SLAMC3 to enforce the
 | |
| *                    parentheses (x+y)+z. The goal is to prevent optimizing
 | |
| *                    compilers from doing x+(y+z).
 | |
| *
 | |
|                      RWORK( I ) = Z( J ) / ( SLAMC3( DSIGJ, -POLES( I+1,
 | |
|      $                            2 ) )-DIFR( I, 1 ) ) /
 | |
|      $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
 | |
|                   END IF
 | |
|   110          CONTINUE
 | |
|                DO 120 I = J + 1, K
 | |
|                   IF( Z( J ).EQ.ZERO ) THEN
 | |
|                      RWORK( I ) = ZERO
 | |
|                   ELSE
 | |
|                      RWORK( I ) = Z( J ) / ( SLAMC3( DSIGJ, -POLES( I,
 | |
|      $                            2 ) )-DIFL( I ) ) /
 | |
|      $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
 | |
|                   END IF
 | |
|   120          CONTINUE
 | |
| *
 | |
| *              Since B and BX are complex, the following call to SGEMV
 | |
| *              is performed in two steps (real and imaginary parts).
 | |
| *
 | |
| *              CALL SGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
 | |
| *    $                     BX( J, 1 ), LDBX )
 | |
| *
 | |
|                I = K + NRHS*2
 | |
|                DO 140 JCOL = 1, NRHS
 | |
|                   DO 130 JROW = 1, K
 | |
|                      I = I + 1
 | |
|                      RWORK( I ) = REAL( B( JROW, JCOL ) )
 | |
|   130             CONTINUE
 | |
|   140          CONTINUE
 | |
|                CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | |
|      $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
 | |
|                I = K + NRHS*2
 | |
|                DO 160 JCOL = 1, NRHS
 | |
|                   DO 150 JROW = 1, K
 | |
|                      I = I + 1
 | |
|                      RWORK( I ) = AIMAG( B( JROW, JCOL ) )
 | |
|   150             CONTINUE
 | |
|   160          CONTINUE
 | |
|                CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
 | |
|      $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
 | |
|                DO 170 JCOL = 1, NRHS
 | |
|                   BX( J, JCOL ) = CMPLX( RWORK( JCOL+K ),
 | |
|      $                            RWORK( JCOL+K+NRHS ) )
 | |
|   170          CONTINUE
 | |
|   180       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Step (2R): if SQRE = 1, apply back the rotation that is
 | |
| *        related to the right null space of the subproblem.
 | |
| *
 | |
|          IF( SQRE.EQ.1 ) THEN
 | |
|             CALL CCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
 | |
|             CALL CSROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
 | |
|          END IF
 | |
|          IF( K.LT.MAX( M, N ) )
 | |
|      $      CALL CLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB,
 | |
|      $                   BX( K+1, 1 ), LDBX )
 | |
| *
 | |
| *        Step (3R): permute rows of B.
 | |
| *
 | |
|          CALL CCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
 | |
|          IF( SQRE.EQ.1 ) THEN
 | |
|             CALL CCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
 | |
|          END IF
 | |
|          DO 190 I = 2, N
 | |
|             CALL CCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
 | |
|   190    CONTINUE
 | |
| *
 | |
| *        Step (4R): apply back the Givens rotations performed.
 | |
| *
 | |
|          DO 200 I = GIVPTR, 1, -1
 | |
|             CALL CSROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
 | |
|      $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
 | |
|      $                  -GIVNUM( I, 1 ) )
 | |
|   200    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLALS0
 | |
| *
 | |
|       END
 |