1321 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1321 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(_Fcomplex x, integer n) {
 | |
| 	_Fcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1./x._Val[0], x._Val[1]=1./x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow = _FCmulcc (pow,x);
 | |
| 			if(u >>= 1) x = _FCmulcc (x,x);
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* > \brief \b CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using th
 | |
| e double-shift/single-shift QR algorithm. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CLAHQR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahqr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahqr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahqr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
 | |
| /*                          IHIZ, Z, LDZ, INFO ) */
 | |
| 
 | |
| /*       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N */
 | |
| /*       LOGICAL            WANTT, WANTZ */
 | |
| /*       COMPLEX            H( LDH, * ), W( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    CLAHQR is an auxiliary routine called by CHSEQR to update the */
 | |
| /* >    eigenvalues and Schur decomposition already computed by CHSEQR, by */
 | |
| /* >    dealing with the Hessenberg submatrix in rows and columns ILO to */
 | |
| /* >    IHI. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] WANTT */
 | |
| /* > \verbatim */
 | |
| /* >          WANTT is LOGICAL */
 | |
| /* >          = .TRUE. : the full Schur form T is required; */
 | |
| /* >          = .FALSE.: only eigenvalues are required. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTZ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTZ is LOGICAL */
 | |
| /* >          = .TRUE. : the matrix of Schur vectors Z is required; */
 | |
| /* >          = .FALSE.: Schur vectors are not required. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix H.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >          It is assumed that H is already upper triangular in rows and */
 | |
| /* >          columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). */
 | |
| /* >          CLAHQR works primarily with the Hessenberg submatrix in rows */
 | |
| /* >          and columns ILO to IHI, but applies transformations to all of */
 | |
| /* >          H if WANTT is .TRUE.. */
 | |
| /* >          1 <= ILO <= f2cmax(1,IHI); IHI <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is COMPLEX array, dimension (LDH,N) */
 | |
| /* >          On entry, the upper Hessenberg matrix H. */
 | |
| /* >          On exit, if INFO is zero and if WANTT is .TRUE., then H */
 | |
| /* >          is upper triangular in rows and columns ILO:IHI.  If INFO */
 | |
| /* >          is zero and if WANTT is .FALSE., then the contents of H */
 | |
| /* >          are unspecified on exit.  The output state of H in case */
 | |
| /* >          INF is positive is below under the description of INFO. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          The leading dimension of the array H. LDH >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is COMPLEX array, dimension (N) */
 | |
| /* >          The computed eigenvalues ILO to IHI are stored in the */
 | |
| /* >          corresponding elements of W. If WANTT is .TRUE., the */
 | |
| /* >          eigenvalues are stored in the same order as on the diagonal */
 | |
| /* >          of the Schur form returned in H, with W(i) = H(i,i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILOZ */
 | |
| /* > \verbatim */
 | |
| /* >          ILOZ is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHIZ */
 | |
| /* > \verbatim */
 | |
| /* >          IHIZ is INTEGER */
 | |
| /* >          Specify the rows of Z to which transformations must be */
 | |
| /* >          applied if WANTZ is .TRUE.. */
 | |
| /* >          1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX array, dimension (LDZ,N) */
 | |
| /* >          If WANTZ is .TRUE., on entry Z must contain the current */
 | |
| /* >          matrix Z of transformations accumulated by CHSEQR, and on */
 | |
| /* >          exit Z has been updated; transformations are applied only to */
 | |
| /* >          the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
 | |
| /* >          If WANTZ is .FALSE., Z is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           = 0:  successful exit */
 | |
| /* >           > 0:  if INFO = i, CLAHQR failed to compute all the */
 | |
| /* >                  eigenvalues ILO to IHI in a total of 30 iterations */
 | |
| /* >                  per eigenvalue; elements i+1:ihi of W contain */
 | |
| /* >                  those eigenvalues which have been successfully */
 | |
| /* >                  computed. */
 | |
| /* > */
 | |
| /* >                  If INFO > 0 and WANTT is .FALSE., then on exit, */
 | |
| /* >                  the remaining unconverged eigenvalues are the */
 | |
| /* >                  eigenvalues of the upper Hessenberg matrix */
 | |
| /* >                  rows and columns ILO through INFO of the final, */
 | |
| /* >                  output value of H. */
 | |
| /* > */
 | |
| /* >                  If INFO > 0 and WANTT is .TRUE., then on exit */
 | |
| /* >          (*)       (initial value of H)*U  = U*(final value of H) */
 | |
| /* >                  where U is an orthogonal matrix.    The final */
 | |
| /* >                  value of H is upper Hessenberg and triangular in */
 | |
| /* >                  rows and columns INFO+1 through IHI. */
 | |
| /* > */
 | |
| /* >                  If INFO > 0 and WANTZ is .TRUE., then on exit */
 | |
| /* >                      (final value of Z)  = (initial value of Z)*U */
 | |
| /* >                  where U is the orthogonal matrix in (*) */
 | |
| /* >                  (regardless of the value of WANTT.) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complexOTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >     02-96 Based on modifications by */
 | |
| /* >     David Day, Sandia National Laboratory, USA */
 | |
| /* > */
 | |
| /* >     12-04 Further modifications by */
 | |
| /* >     Ralph Byers, University of Kansas, USA */
 | |
| /* >     This is a modified version of CLAHQR from LAPACK version 3.0. */
 | |
| /* >     It is (1) more robust against overflow and underflow and */
 | |
| /* >     (2) adopts the more conservative Ahues & Tisseur stopping */
 | |
| /* >     criterion (LAWN 122, 1997). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void clahqr_(logical *wantt, logical *wantz, integer *n, 
 | |
| 	integer *ilo, integer *ihi, complex *h__, integer *ldh, complex *w, 
 | |
| 	integer *iloz, integer *ihiz, complex *z__, integer *ldz, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     real r__1, r__2, r__3, r__4, r__5, r__6;
 | |
|     complex q__1, q__2, q__3, q__4, q__5, q__6, q__7;
 | |
| 
 | |
|     /* Local variables */
 | |
|     complex temp;
 | |
|     integer i__, j, k, l, m;
 | |
|     real s;
 | |
|     complex t, u, v[2], x, y;
 | |
|     extern /* Subroutine */ void cscal_(integer *, complex *, complex *, 
 | |
| 	    integer *), ccopy_(integer *, complex *, integer *, complex *, 
 | |
| 	    integer *);
 | |
|     integer itmax;
 | |
|     real rtemp;
 | |
|     integer i1, i2;
 | |
|     complex t1;
 | |
|     real t2;
 | |
|     complex v2;
 | |
|     real aa, ab, ba, bb, h10;
 | |
|     complex h11;
 | |
|     real h21;
 | |
|     complex h22, sc;
 | |
|     integer nh;
 | |
|     extern /* Subroutine */ void slabad_(real *, real *), clarfg_(integer *, 
 | |
| 	    complex *, complex *, integer *, complex *);
 | |
|     extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
 | |
|     extern real slamch_(char *);
 | |
|     integer nz;
 | |
|     real sx, safmin, safmax, smlnum;
 | |
|     integer jhi;
 | |
|     complex h11s;
 | |
|     integer jlo, its;
 | |
|     real ulp;
 | |
|     complex sum;
 | |
|     real tst;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ========================================================= */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     --w;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
|     if (*ilo == *ihi) {
 | |
| 	i__1 = *ilo;
 | |
| 	i__2 = *ilo + *ilo * h_dim1;
 | |
| 	w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== clear out the trash ==== */
 | |
|     i__1 = *ihi - 3;
 | |
|     for (j = *ilo; j <= i__1; ++j) {
 | |
| 	i__2 = j + 2 + j * h_dim1;
 | |
| 	h__[i__2].r = 0.f, h__[i__2].i = 0.f;
 | |
| 	i__2 = j + 3 + j * h_dim1;
 | |
| 	h__[i__2].r = 0.f, h__[i__2].i = 0.f;
 | |
| /* L10: */
 | |
|     }
 | |
|     if (*ilo <= *ihi - 2) {
 | |
| 	i__1 = *ihi + (*ihi - 2) * h_dim1;
 | |
| 	h__[i__1].r = 0.f, h__[i__1].i = 0.f;
 | |
|     }
 | |
| /*     ==== ensure that subdiagonal entries are real ==== */
 | |
|     if (*wantt) {
 | |
| 	jlo = 1;
 | |
| 	jhi = *n;
 | |
|     } else {
 | |
| 	jlo = *ilo;
 | |
| 	jhi = *ihi;
 | |
|     }
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo + 1; i__ <= i__1; ++i__) {
 | |
| 	if (r_imag(&h__[i__ + (i__ - 1) * h_dim1]) != 0.f) {
 | |
| /*           ==== The following redundant normalization */
 | |
| /*           .    avoids problems with both gradual and */
 | |
| /*           .    sudden underflow in ABS(H(I,I-1)) ==== */
 | |
| 	    i__2 = i__ + (i__ - 1) * h_dim1;
 | |
| 	    i__3 = i__ + (i__ - 1) * h_dim1;
 | |
| 	    r__3 = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[i__ 
 | |
| 		    + (i__ - 1) * h_dim1]), abs(r__2));
 | |
| 	    q__1.r = h__[i__2].r / r__3, q__1.i = h__[i__2].i / r__3;
 | |
| 	    sc.r = q__1.r, sc.i = q__1.i;
 | |
| 	    r_cnjg(&q__2, &sc);
 | |
| 	    r__1 = c_abs(&sc);
 | |
| 	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
 | |
| 	    sc.r = q__1.r, sc.i = q__1.i;
 | |
| 	    i__2 = i__ + (i__ - 1) * h_dim1;
 | |
| 	    r__1 = c_abs(&h__[i__ + (i__ - 1) * h_dim1]);
 | |
| 	    h__[i__2].r = r__1, h__[i__2].i = 0.f;
 | |
| 	    i__2 = jhi - i__ + 1;
 | |
| 	    cscal_(&i__2, &sc, &h__[i__ + i__ * h_dim1], ldh);
 | |
| /* Computing MIN */
 | |
| 	    i__3 = jhi, i__4 = i__ + 1;
 | |
| 	    i__2 = f2cmin(i__3,i__4) - jlo + 1;
 | |
| 	    r_cnjg(&q__1, &sc);
 | |
| 	    cscal_(&i__2, &q__1, &h__[jlo + i__ * h_dim1], &c__1);
 | |
| 	    if (*wantz) {
 | |
| 		i__2 = *ihiz - *iloz + 1;
 | |
| 		r_cnjg(&q__1, &sc);
 | |
| 		cscal_(&i__2, &q__1, &z__[*iloz + i__ * z_dim1], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     nh = *ihi - *ilo + 1;
 | |
|     nz = *ihiz - *iloz + 1;
 | |
| 
 | |
| /*     Set machine-dependent constants for the stopping criterion. */
 | |
| 
 | |
|     safmin = slamch_("SAFE MINIMUM");
 | |
|     safmax = 1.f / safmin;
 | |
|     slabad_(&safmin, &safmax);
 | |
|     ulp = slamch_("PRECISION");
 | |
|     smlnum = safmin * ((real) nh / ulp);
 | |
| 
 | |
| /*     I1 and I2 are the indices of the first row and last column of H */
 | |
| /*     to which transformations must be applied. If eigenvalues only are */
 | |
| /*     being computed, I1 and I2 are set inside the main loop. */
 | |
| 
 | |
|     if (*wantt) {
 | |
| 	i1 = 1;
 | |
| 	i2 = *n;
 | |
|     }
 | |
| 
 | |
| /*     ITMAX is the total number of QR iterations allowed. */
 | |
| 
 | |
|     itmax = f2cmax(10,nh) * 30;
 | |
| 
 | |
| /*     The main loop begins here. I is the loop index and decreases from */
 | |
| /*     IHI to ILO in steps of 1. Each iteration of the loop works */
 | |
| /*     with the active submatrix in rows and columns L to I. */
 | |
| /*     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or */
 | |
| /*     H(L,L-1) is negligible so that the matrix splits. */
 | |
| 
 | |
|     i__ = *ihi;
 | |
| L30:
 | |
|     if (i__ < *ilo) {
 | |
| 	goto L150;
 | |
|     }
 | |
| 
 | |
| /*     Perform QR iterations on rows and columns ILO to I until a */
 | |
| /*     submatrix of order 1 splits off at the bottom because a */
 | |
| /*     subdiagonal element has become negligible. */
 | |
| 
 | |
|     l = *ilo;
 | |
|     i__1 = itmax;
 | |
|     for (its = 0; its <= i__1; ++its) {
 | |
| 
 | |
| /*        Look for a single small subdiagonal element. */
 | |
| 
 | |
| 	i__2 = l + 1;
 | |
| 	for (k = i__; k >= i__2; --k) {
 | |
| 	    i__3 = k + (k - 1) * h_dim1;
 | |
| 	    if ((r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[k + (k 
 | |
| 		    - 1) * h_dim1]), abs(r__2)) <= smlnum) {
 | |
| 		goto L50;
 | |
| 	    }
 | |
| 	    i__3 = k - 1 + (k - 1) * h_dim1;
 | |
| 	    i__4 = k + k * h_dim1;
 | |
| 	    tst = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[k - 1 
 | |
| 		    + (k - 1) * h_dim1]), abs(r__2)) + ((r__3 = h__[i__4].r, 
 | |
| 		    abs(r__3)) + (r__4 = r_imag(&h__[k + k * h_dim1]), abs(
 | |
| 		    r__4)));
 | |
| 	    if (tst == 0.f) {
 | |
| 		if (k - 2 >= *ilo) {
 | |
| 		    i__3 = k - 1 + (k - 2) * h_dim1;
 | |
| 		    tst += (r__1 = h__[i__3].r, abs(r__1));
 | |
| 		}
 | |
| 		if (k + 1 <= *ihi) {
 | |
| 		    i__3 = k + 1 + k * h_dim1;
 | |
| 		    tst += (r__1 = h__[i__3].r, abs(r__1));
 | |
| 		}
 | |
| 	    }
 | |
| /*           ==== The following is a conservative small subdiagonal */
 | |
| /*           .    deflation criterion due to Ahues & Tisseur (LAWN 122, */
 | |
| /*           .    1997). It has better mathematical foundation and */
 | |
| /*           .    improves accuracy in some examples.  ==== */
 | |
| 	    i__3 = k + (k - 1) * h_dim1;
 | |
| 	    if ((r__1 = h__[i__3].r, abs(r__1)) <= ulp * tst) {
 | |
| /* Computing MAX */
 | |
| 		i__3 = k + (k - 1) * h_dim1;
 | |
| 		i__4 = k - 1 + k * h_dim1;
 | |
| 		r__5 = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[
 | |
| 			k + (k - 1) * h_dim1]), abs(r__2)), r__6 = (r__3 = 
 | |
| 			h__[i__4].r, abs(r__3)) + (r__4 = r_imag(&h__[k - 1 + 
 | |
| 			k * h_dim1]), abs(r__4));
 | |
| 		ab = f2cmax(r__5,r__6);
 | |
| /* Computing MIN */
 | |
| 		i__3 = k + (k - 1) * h_dim1;
 | |
| 		i__4 = k - 1 + k * h_dim1;
 | |
| 		r__5 = (r__1 = h__[i__3].r, abs(r__1)) + (r__2 = r_imag(&h__[
 | |
| 			k + (k - 1) * h_dim1]), abs(r__2)), r__6 = (r__3 = 
 | |
| 			h__[i__4].r, abs(r__3)) + (r__4 = r_imag(&h__[k - 1 + 
 | |
| 			k * h_dim1]), abs(r__4));
 | |
| 		ba = f2cmin(r__5,r__6);
 | |
| 		i__3 = k - 1 + (k - 1) * h_dim1;
 | |
| 		i__4 = k + k * h_dim1;
 | |
| 		q__2.r = h__[i__3].r - h__[i__4].r, q__2.i = h__[i__3].i - 
 | |
| 			h__[i__4].i;
 | |
| 		q__1.r = q__2.r, q__1.i = q__2.i;
 | |
| /* Computing MAX */
 | |
| 		i__5 = k + k * h_dim1;
 | |
| 		r__5 = (r__1 = h__[i__5].r, abs(r__1)) + (r__2 = r_imag(&h__[
 | |
| 			k + k * h_dim1]), abs(r__2)), r__6 = (r__3 = q__1.r, 
 | |
| 			abs(r__3)) + (r__4 = r_imag(&q__1), abs(r__4));
 | |
| 		aa = f2cmax(r__5,r__6);
 | |
| 		i__3 = k - 1 + (k - 1) * h_dim1;
 | |
| 		i__4 = k + k * h_dim1;
 | |
| 		q__2.r = h__[i__3].r - h__[i__4].r, q__2.i = h__[i__3].i - 
 | |
| 			h__[i__4].i;
 | |
| 		q__1.r = q__2.r, q__1.i = q__2.i;
 | |
| /* Computing MIN */
 | |
| 		i__5 = k + k * h_dim1;
 | |
| 		r__5 = (r__1 = h__[i__5].r, abs(r__1)) + (r__2 = r_imag(&h__[
 | |
| 			k + k * h_dim1]), abs(r__2)), r__6 = (r__3 = q__1.r, 
 | |
| 			abs(r__3)) + (r__4 = r_imag(&q__1), abs(r__4));
 | |
| 		bb = f2cmin(r__5,r__6);
 | |
| 		s = aa + ab;
 | |
| /* Computing MAX */
 | |
| 		r__1 = smlnum, r__2 = ulp * (bb * (aa / s));
 | |
| 		if (ba * (ab / s) <= f2cmax(r__1,r__2)) {
 | |
| 		    goto L50;
 | |
| 		}
 | |
| 	    }
 | |
| /* L40: */
 | |
| 	}
 | |
| L50:
 | |
| 	l = k;
 | |
| 	if (l > *ilo) {
 | |
| 
 | |
| /*           H(L,L-1) is negligible */
 | |
| 
 | |
| 	    i__2 = l + (l - 1) * h_dim1;
 | |
| 	    h__[i__2].r = 0.f, h__[i__2].i = 0.f;
 | |
| 	}
 | |
| 
 | |
| /*        Exit from loop if a submatrix of order 1 has split off. */
 | |
| 
 | |
| 	if (l >= i__) {
 | |
| 	    goto L140;
 | |
| 	}
 | |
| 
 | |
| /*        Now the active submatrix is in rows and columns L to I. If */
 | |
| /*        eigenvalues only are being computed, only the active submatrix */
 | |
| /*        need be transformed. */
 | |
| 
 | |
| 	if (! (*wantt)) {
 | |
| 	    i1 = l;
 | |
| 	    i2 = i__;
 | |
| 	}
 | |
| 
 | |
| 	if (its == 10) {
 | |
| 
 | |
| /*           Exceptional shift. */
 | |
| 
 | |
| 	    i__2 = l + 1 + l * h_dim1;
 | |
| 	    s = (r__1 = h__[i__2].r, abs(r__1)) * .75f;
 | |
| 	    i__2 = l + l * h_dim1;
 | |
| 	    q__1.r = s + h__[i__2].r, q__1.i = h__[i__2].i;
 | |
| 	    t.r = q__1.r, t.i = q__1.i;
 | |
| 	} else if (its == 20) {
 | |
| 
 | |
| /*           Exceptional shift. */
 | |
| 
 | |
| 	    i__2 = i__ + (i__ - 1) * h_dim1;
 | |
| 	    s = (r__1 = h__[i__2].r, abs(r__1)) * .75f;
 | |
| 	    i__2 = i__ + i__ * h_dim1;
 | |
| 	    q__1.r = s + h__[i__2].r, q__1.i = h__[i__2].i;
 | |
| 	    t.r = q__1.r, t.i = q__1.i;
 | |
| 	} else {
 | |
| 
 | |
| /*           Wilkinson's shift. */
 | |
| 
 | |
| 	    i__2 = i__ + i__ * h_dim1;
 | |
| 	    t.r = h__[i__2].r, t.i = h__[i__2].i;
 | |
| 	    c_sqrt(&q__2, &h__[i__ - 1 + i__ * h_dim1]);
 | |
| 	    c_sqrt(&q__3, &h__[i__ + (i__ - 1) * h_dim1]);
 | |
| 	    q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r * 
 | |
| 		    q__3.i + q__2.i * q__3.r;
 | |
| 	    u.r = q__1.r, u.i = q__1.i;
 | |
| 	    s = (r__1 = u.r, abs(r__1)) + (r__2 = r_imag(&u), abs(r__2));
 | |
| 	    if (s != 0.f) {
 | |
| 		i__2 = i__ - 1 + (i__ - 1) * h_dim1;
 | |
| 		q__2.r = h__[i__2].r - t.r, q__2.i = h__[i__2].i - t.i;
 | |
| 		q__1.r = q__2.r * .5f, q__1.i = q__2.i * .5f;
 | |
| 		x.r = q__1.r, x.i = q__1.i;
 | |
| 		sx = (r__1 = x.r, abs(r__1)) + (r__2 = r_imag(&x), abs(r__2));
 | |
| /* Computing MAX */
 | |
| 		r__3 = s, r__4 = (r__1 = x.r, abs(r__1)) + (r__2 = r_imag(&x),
 | |
| 			 abs(r__2));
 | |
| 		s = f2cmax(r__3,r__4);
 | |
| 		q__5.r = x.r / s, q__5.i = x.i / s;
 | |
| 		pow_ci(&q__4, &q__5, &c__2);
 | |
| 		q__7.r = u.r / s, q__7.i = u.i / s;
 | |
| 		pow_ci(&q__6, &q__7, &c__2);
 | |
| 		q__3.r = q__4.r + q__6.r, q__3.i = q__4.i + q__6.i;
 | |
| 		c_sqrt(&q__2, &q__3);
 | |
| 		q__1.r = s * q__2.r, q__1.i = s * q__2.i;
 | |
| 		y.r = q__1.r, y.i = q__1.i;
 | |
| 		if (sx > 0.f) {
 | |
| 		    q__1.r = x.r / sx, q__1.i = x.i / sx;
 | |
| 		    q__2.r = x.r / sx, q__2.i = x.i / sx;
 | |
| 		    if (q__1.r * y.r + r_imag(&q__2) * r_imag(&y) < 0.f) {
 | |
| 			q__3.r = -y.r, q__3.i = -y.i;
 | |
| 			y.r = q__3.r, y.i = q__3.i;
 | |
| 		    }
 | |
| 		}
 | |
| 		q__4.r = x.r + y.r, q__4.i = x.i + y.i;
 | |
| 		cladiv_(&q__3, &u, &q__4);
 | |
| 		q__2.r = u.r * q__3.r - u.i * q__3.i, q__2.i = u.r * q__3.i + 
 | |
| 			u.i * q__3.r;
 | |
| 		q__1.r = t.r - q__2.r, q__1.i = t.i - q__2.i;
 | |
| 		t.r = q__1.r, t.i = q__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Look for two consecutive small subdiagonal elements. */
 | |
| 
 | |
| 	i__2 = l + 1;
 | |
| 	for (m = i__ - 1; m >= i__2; --m) {
 | |
| 
 | |
| /*           Determine the effect of starting the single-shift QR */
 | |
| /*           iteration at row M, and see if this would make H(M,M-1) */
 | |
| /*           negligible. */
 | |
| 
 | |
| 	    i__3 = m + m * h_dim1;
 | |
| 	    h11.r = h__[i__3].r, h11.i = h__[i__3].i;
 | |
| 	    i__3 = m + 1 + (m + 1) * h_dim1;
 | |
| 	    h22.r = h__[i__3].r, h22.i = h__[i__3].i;
 | |
| 	    q__1.r = h11.r - t.r, q__1.i = h11.i - t.i;
 | |
| 	    h11s.r = q__1.r, h11s.i = q__1.i;
 | |
| 	    i__3 = m + 1 + m * h_dim1;
 | |
| 	    h21 = h__[i__3].r;
 | |
| 	    s = (r__1 = h11s.r, abs(r__1)) + (r__2 = r_imag(&h11s), abs(r__2))
 | |
| 		     + abs(h21);
 | |
| 	    q__1.r = h11s.r / s, q__1.i = h11s.i / s;
 | |
| 	    h11s.r = q__1.r, h11s.i = q__1.i;
 | |
| 	    h21 /= s;
 | |
| 	    v[0].r = h11s.r, v[0].i = h11s.i;
 | |
| 	    v[1].r = h21, v[1].i = 0.f;
 | |
| 	    i__3 = m + (m - 1) * h_dim1;
 | |
| 	    h10 = h__[i__3].r;
 | |
| 	    if (abs(h10) * abs(h21) <= ulp * (((r__1 = h11s.r, abs(r__1)) + (
 | |
| 		    r__2 = r_imag(&h11s), abs(r__2))) * ((r__3 = h11.r, abs(
 | |
| 		    r__3)) + (r__4 = r_imag(&h11), abs(r__4)) + ((r__5 = 
 | |
| 		    h22.r, abs(r__5)) + (r__6 = r_imag(&h22), abs(r__6)))))) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| /* L60: */
 | |
| 	}
 | |
| 	i__2 = l + l * h_dim1;
 | |
| 	h11.r = h__[i__2].r, h11.i = h__[i__2].i;
 | |
| 	i__2 = l + 1 + (l + 1) * h_dim1;
 | |
| 	h22.r = h__[i__2].r, h22.i = h__[i__2].i;
 | |
| 	q__1.r = h11.r - t.r, q__1.i = h11.i - t.i;
 | |
| 	h11s.r = q__1.r, h11s.i = q__1.i;
 | |
| 	i__2 = l + 1 + l * h_dim1;
 | |
| 	h21 = h__[i__2].r;
 | |
| 	s = (r__1 = h11s.r, abs(r__1)) + (r__2 = r_imag(&h11s), abs(r__2)) + 
 | |
| 		abs(h21);
 | |
| 	q__1.r = h11s.r / s, q__1.i = h11s.i / s;
 | |
| 	h11s.r = q__1.r, h11s.i = q__1.i;
 | |
| 	h21 /= s;
 | |
| 	v[0].r = h11s.r, v[0].i = h11s.i;
 | |
| 	v[1].r = h21, v[1].i = 0.f;
 | |
| L70:
 | |
| 
 | |
| /*        Single-shift QR step */
 | |
| 
 | |
| 	i__2 = i__ - 1;
 | |
| 	for (k = m; k <= i__2; ++k) {
 | |
| 
 | |
| /*           The first iteration of this loop determines a reflection G */
 | |
| /*           from the vector V and applies it from left and right to H, */
 | |
| /*           thus creating a nonzero bulge below the subdiagonal. */
 | |
| 
 | |
| /*           Each subsequent iteration determines a reflection G to */
 | |
| /*           restore the Hessenberg form in the (K-1)th column, and thus */
 | |
| /*           chases the bulge one step toward the bottom of the active */
 | |
| /*           submatrix. */
 | |
| 
 | |
| /*           V(2) is always real before the call to CLARFG, and hence */
 | |
| /*           after the call T2 ( = T1*V(2) ) is also real. */
 | |
| 
 | |
| 	    if (k > m) {
 | |
| 		ccopy_(&c__2, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
 | |
| 	    }
 | |
| 	    clarfg_(&c__2, v, &v[1], &c__1, &t1);
 | |
| 	    if (k > m) {
 | |
| 		i__3 = k + (k - 1) * h_dim1;
 | |
| 		h__[i__3].r = v[0].r, h__[i__3].i = v[0].i;
 | |
| 		i__3 = k + 1 + (k - 1) * h_dim1;
 | |
| 		h__[i__3].r = 0.f, h__[i__3].i = 0.f;
 | |
| 	    }
 | |
| 	    v2.r = v[1].r, v2.i = v[1].i;
 | |
| 	    q__1.r = t1.r * v2.r - t1.i * v2.i, q__1.i = t1.r * v2.i + t1.i * 
 | |
| 		    v2.r;
 | |
| 	    t2 = q__1.r;
 | |
| 
 | |
| /*           Apply G from the left to transform the rows of the matrix */
 | |
| /*           in columns K to I2. */
 | |
| 
 | |
| 	    i__3 = i2;
 | |
| 	    for (j = k; j <= i__3; ++j) {
 | |
| 		r_cnjg(&q__3, &t1);
 | |
| 		i__4 = k + j * h_dim1;
 | |
| 		q__2.r = q__3.r * h__[i__4].r - q__3.i * h__[i__4].i, q__2.i =
 | |
| 			 q__3.r * h__[i__4].i + q__3.i * h__[i__4].r;
 | |
| 		i__5 = k + 1 + j * h_dim1;
 | |
| 		q__4.r = t2 * h__[i__5].r, q__4.i = t2 * h__[i__5].i;
 | |
| 		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | |
| 		sum.r = q__1.r, sum.i = q__1.i;
 | |
| 		i__4 = k + j * h_dim1;
 | |
| 		i__5 = k + j * h_dim1;
 | |
| 		q__1.r = h__[i__5].r - sum.r, q__1.i = h__[i__5].i - sum.i;
 | |
| 		h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
 | |
| 		i__4 = k + 1 + j * h_dim1;
 | |
| 		i__5 = k + 1 + j * h_dim1;
 | |
| 		q__2.r = sum.r * v2.r - sum.i * v2.i, q__2.i = sum.r * v2.i + 
 | |
| 			sum.i * v2.r;
 | |
| 		q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
 | |
| 		h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
 | |
| /* L80: */
 | |
| 	    }
 | |
| 
 | |
| /*           Apply G from the right to transform the columns of the */
 | |
| /*           matrix in rows I1 to f2cmin(K+2,I). */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__4 = k + 2;
 | |
| 	    i__3 = f2cmin(i__4,i__);
 | |
| 	    for (j = i1; j <= i__3; ++j) {
 | |
| 		i__4 = j + k * h_dim1;
 | |
| 		q__2.r = t1.r * h__[i__4].r - t1.i * h__[i__4].i, q__2.i = 
 | |
| 			t1.r * h__[i__4].i + t1.i * h__[i__4].r;
 | |
| 		i__5 = j + (k + 1) * h_dim1;
 | |
| 		q__3.r = t2 * h__[i__5].r, q__3.i = t2 * h__[i__5].i;
 | |
| 		q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | |
| 		sum.r = q__1.r, sum.i = q__1.i;
 | |
| 		i__4 = j + k * h_dim1;
 | |
| 		i__5 = j + k * h_dim1;
 | |
| 		q__1.r = h__[i__5].r - sum.r, q__1.i = h__[i__5].i - sum.i;
 | |
| 		h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
 | |
| 		i__4 = j + (k + 1) * h_dim1;
 | |
| 		i__5 = j + (k + 1) * h_dim1;
 | |
| 		r_cnjg(&q__3, &v2);
 | |
| 		q__2.r = sum.r * q__3.r - sum.i * q__3.i, q__2.i = sum.r * 
 | |
| 			q__3.i + sum.i * q__3.r;
 | |
| 		q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
 | |
| 		h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
 | |
| /* L90: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (*wantz) {
 | |
| 
 | |
| /*              Accumulate transformations in the matrix Z */
 | |
| 
 | |
| 		i__3 = *ihiz;
 | |
| 		for (j = *iloz; j <= i__3; ++j) {
 | |
| 		    i__4 = j + k * z_dim1;
 | |
| 		    q__2.r = t1.r * z__[i__4].r - t1.i * z__[i__4].i, q__2.i =
 | |
| 			     t1.r * z__[i__4].i + t1.i * z__[i__4].r;
 | |
| 		    i__5 = j + (k + 1) * z_dim1;
 | |
| 		    q__3.r = t2 * z__[i__5].r, q__3.i = t2 * z__[i__5].i;
 | |
| 		    q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | |
| 		    sum.r = q__1.r, sum.i = q__1.i;
 | |
| 		    i__4 = j + k * z_dim1;
 | |
| 		    i__5 = j + k * z_dim1;
 | |
| 		    q__1.r = z__[i__5].r - sum.r, q__1.i = z__[i__5].i - 
 | |
| 			    sum.i;
 | |
| 		    z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
 | |
| 		    i__4 = j + (k + 1) * z_dim1;
 | |
| 		    i__5 = j + (k + 1) * z_dim1;
 | |
| 		    r_cnjg(&q__3, &v2);
 | |
| 		    q__2.r = sum.r * q__3.r - sum.i * q__3.i, q__2.i = sum.r *
 | |
| 			     q__3.i + sum.i * q__3.r;
 | |
| 		    q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i - 
 | |
| 			    q__2.i;
 | |
| 		    z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
 | |
| /* L100: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    if (k == m && m > l) {
 | |
| 
 | |
| /*              If the QR step was started at row M > L because two */
 | |
| /*              consecutive small subdiagonals were found, then extra */
 | |
| /*              scaling must be performed to ensure that H(M,M-1) remains */
 | |
| /*              real. */
 | |
| 
 | |
| 		q__1.r = 1.f - t1.r, q__1.i = 0.f - t1.i;
 | |
| 		temp.r = q__1.r, temp.i = q__1.i;
 | |
| 		r__1 = c_abs(&temp);
 | |
| 		q__1.r = temp.r / r__1, q__1.i = temp.i / r__1;
 | |
| 		temp.r = q__1.r, temp.i = q__1.i;
 | |
| 		i__3 = m + 1 + m * h_dim1;
 | |
| 		i__4 = m + 1 + m * h_dim1;
 | |
| 		r_cnjg(&q__2, &temp);
 | |
| 		q__1.r = h__[i__4].r * q__2.r - h__[i__4].i * q__2.i, q__1.i =
 | |
| 			 h__[i__4].r * q__2.i + h__[i__4].i * q__2.r;
 | |
| 		h__[i__3].r = q__1.r, h__[i__3].i = q__1.i;
 | |
| 		if (m + 2 <= i__) {
 | |
| 		    i__3 = m + 2 + (m + 1) * h_dim1;
 | |
| 		    i__4 = m + 2 + (m + 1) * h_dim1;
 | |
| 		    q__1.r = h__[i__4].r * temp.r - h__[i__4].i * temp.i, 
 | |
| 			    q__1.i = h__[i__4].r * temp.i + h__[i__4].i * 
 | |
| 			    temp.r;
 | |
| 		    h__[i__3].r = q__1.r, h__[i__3].i = q__1.i;
 | |
| 		}
 | |
| 		i__3 = i__;
 | |
| 		for (j = m; j <= i__3; ++j) {
 | |
| 		    if (j != m + 1) {
 | |
| 			if (i2 > j) {
 | |
| 			    i__4 = i2 - j;
 | |
| 			    cscal_(&i__4, &temp, &h__[j + (j + 1) * h_dim1], 
 | |
| 				    ldh);
 | |
| 			}
 | |
| 			i__4 = j - i1;
 | |
| 			r_cnjg(&q__1, &temp);
 | |
| 			cscal_(&i__4, &q__1, &h__[i1 + j * h_dim1], &c__1);
 | |
| 			if (*wantz) {
 | |
| 			    r_cnjg(&q__1, &temp);
 | |
| 			    cscal_(&nz, &q__1, &z__[*iloz + j * z_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| /* L110: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L120: */
 | |
| 	}
 | |
| 
 | |
| /*        Ensure that H(I,I-1) is real. */
 | |
| 
 | |
| 	i__2 = i__ + (i__ - 1) * h_dim1;
 | |
| 	temp.r = h__[i__2].r, temp.i = h__[i__2].i;
 | |
| 	if (r_imag(&temp) != 0.f) {
 | |
| 	    rtemp = c_abs(&temp);
 | |
| 	    i__2 = i__ + (i__ - 1) * h_dim1;
 | |
| 	    h__[i__2].r = rtemp, h__[i__2].i = 0.f;
 | |
| 	    q__1.r = temp.r / rtemp, q__1.i = temp.i / rtemp;
 | |
| 	    temp.r = q__1.r, temp.i = q__1.i;
 | |
| 	    if (i2 > i__) {
 | |
| 		i__2 = i2 - i__;
 | |
| 		r_cnjg(&q__1, &temp);
 | |
| 		cscal_(&i__2, &q__1, &h__[i__ + (i__ + 1) * h_dim1], ldh);
 | |
| 	    }
 | |
| 	    i__2 = i__ - i1;
 | |
| 	    cscal_(&i__2, &temp, &h__[i1 + i__ * h_dim1], &c__1);
 | |
| 	    if (*wantz) {
 | |
| 		cscal_(&nz, &temp, &z__[*iloz + i__ * z_dim1], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /* L130: */
 | |
|     }
 | |
| 
 | |
| /*     Failure to converge in remaining number of iterations */
 | |
| 
 | |
|     *info = i__;
 | |
|     return;
 | |
| 
 | |
| L140:
 | |
| 
 | |
| /*     H(I,I-1) is negligible: one eigenvalue has converged. */
 | |
| 
 | |
|     i__1 = i__;
 | |
|     i__2 = i__ + i__ * h_dim1;
 | |
|     w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
 | |
| 
 | |
| /*     return to start of the main loop with new value of I. */
 | |
| 
 | |
|     i__ = l - 1;
 | |
|     goto L30;
 | |
| 
 | |
| L150:
 | |
|     return;
 | |
| 
 | |
| /*     End of CLAHQR */
 | |
| 
 | |
| } /* clahqr_ */
 | |
| 
 |