163 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAEV2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claev2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claev2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claev2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL               CS1, RT1, RT2
 | |
| *       COMPLEX            A, B, C, SN1
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
 | |
| *>    [  A         B  ]
 | |
| *>    [  CONJG(B)  C  ].
 | |
| *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 | |
| *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 | |
| *> eigenvector for RT1, giving the decomposition
 | |
| *>
 | |
| *> [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
 | |
| *> [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX
 | |
| *>         The (1,1) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX
 | |
| *>         The (1,2) element and the conjugate of the (2,1) element of
 | |
| *>         the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX
 | |
| *>         The (2,2) element of the 2-by-2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT1
 | |
| *> \verbatim
 | |
| *>          RT1 is REAL
 | |
| *>         The eigenvalue of larger absolute value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT2
 | |
| *> \verbatim
 | |
| *>          RT2 is REAL
 | |
| *>         The eigenvalue of smaller absolute value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CS1
 | |
| *> \verbatim
 | |
| *>          CS1 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SN1
 | |
| *> \verbatim
 | |
| *>          SN1 is COMPLEX
 | |
| *>         The vector (CS1, SN1) is a unit right eigenvector for RT1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  RT1 is accurate to a few ulps barring over/underflow.
 | |
| *>
 | |
| *>  RT2 may be inaccurate if there is massive cancellation in the
 | |
| *>  determinant A*C-B*B; higher precision or correctly rounded or
 | |
| *>  correctly truncated arithmetic would be needed to compute RT2
 | |
| *>  accurately in all cases.
 | |
| *>
 | |
| *>  CS1 and SN1 are accurate to a few ulps barring over/underflow.
 | |
| *>
 | |
| *>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
 | |
| *>  Underflow is harmless if the input data is 0 or exceeds
 | |
| *>     underflow_threshold / macheps.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL               CS1, RT1, RT2
 | |
|       COMPLEX            A, B, C, SN1
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E0 )
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               T
 | |
|       COMPLEX            W
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLAEV2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( ABS( B ).EQ.ZERO ) THEN
 | |
|          W = ONE
 | |
|       ELSE
 | |
|          W = CONJG( B ) / ABS( B )
 | |
|       END IF
 | |
|       CALL SLAEV2( REAL( A ), ABS( B ), REAL( C ), RT1, RT2, CS1, T )
 | |
|       SN1 = W*T
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAEV2
 | |
| *
 | |
|       END
 |