369 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAED0 used by CSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAED0 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed0.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed0.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed0.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
 | |
| *                          IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDQ, LDQS, N, QSIZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               D( * ), E( * ), RWORK( * )
 | |
| *       COMPLEX            Q( LDQ, * ), QSTORE( LDQS, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> Using the divide and conquer method, CLAED0 computes all eigenvalues
 | |
| *> of a symmetric tridiagonal matrix which is one diagonal block of
 | |
| *> those from reducing a dense or band Hermitian matrix and
 | |
| *> corresponding eigenvectors of the dense or band matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] QSIZ
 | |
| *> \verbatim
 | |
| *>          QSIZ is INTEGER
 | |
| *>         The dimension of the unitary matrix used to reduce
 | |
| *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>         On entry, the diagonal elements of the tridiagonal matrix.
 | |
| *>         On exit, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>         On entry, the off-diagonal elements of the tridiagonal matrix.
 | |
| *>         On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ,N)
 | |
| *>         On entry, Q must contain an QSIZ x N matrix whose columns
 | |
| *>         unitarily orthonormal. It is a part of the unitary matrix
 | |
| *>         that reduces the full dense Hermitian matrix to a
 | |
| *>         (reducible) symmetric tridiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>         The leading dimension of the array Q.  LDQ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array,
 | |
| *>         the dimension of IWORK must be at least
 | |
| *>                      6 + 6*N + 5*N*lg N
 | |
| *>                      ( lg( N ) = smallest integer k
 | |
| *>                                  such that 2^k >= N )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array,
 | |
| *>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
 | |
| *>                        ( lg( N ) = smallest integer k
 | |
| *>                                    such that 2^k >= N )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] QSTORE
 | |
| *> \verbatim
 | |
| *>          QSTORE is COMPLEX array, dimension (LDQS, N)
 | |
| *>         Used to store parts of
 | |
| *>         the eigenvector matrix when the updating matrix multiplies
 | |
| *>         take place.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQS
 | |
| *> \verbatim
 | |
| *>          LDQS is INTEGER
 | |
| *>         The leading dimension of the array QSTORE.
 | |
| *>         LDQS >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  The algorithm failed to compute an eigenvalue while
 | |
| *>                working on the submatrix lying in rows and columns
 | |
| *>                INFO/(N+1) through mod(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
 | |
|      $                   IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDQ, LDQS, N, QSIZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               D( * ), E( * ), RWORK( * )
 | |
|       COMPLEX            Q( LDQ, * ), QSTORE( LDQS, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *  Warning:      N could be as big as QSIZ!
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               TWO
 | |
|       PARAMETER          ( TWO = 2.E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
 | |
|      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
 | |
|      $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
 | |
|      $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
 | |
|       REAL               TEMP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CLACRM, CLAED7, SCOPY, SSTEQR, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, INT, LOG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
 | |
| *        INFO = -1
 | |
| *     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
 | |
| *    $        THEN
 | |
|       IF( QSIZ.LT.MAX( 0, N ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CLAED0', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       SMLSIZ = ILAENV( 9, 'CLAED0', ' ', 0, 0, 0, 0 )
 | |
| *
 | |
| *     Determine the size and placement of the submatrices, and save in
 | |
| *     the leading elements of IWORK.
 | |
| *
 | |
|       IWORK( 1 ) = N
 | |
|       SUBPBS = 1
 | |
|       TLVLS = 0
 | |
|    10 CONTINUE
 | |
|       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
 | |
|          DO 20 J = SUBPBS, 1, -1
 | |
|             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
 | |
|             IWORK( 2*J-1 ) = IWORK( J ) / 2
 | |
|    20    CONTINUE
 | |
|          TLVLS = TLVLS + 1
 | |
|          SUBPBS = 2*SUBPBS
 | |
|          GO TO 10
 | |
|       END IF
 | |
|       DO 30 J = 2, SUBPBS
 | |
|          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
 | |
| *     using rank-1 modifications (cuts).
 | |
| *
 | |
|       SPM1 = SUBPBS - 1
 | |
|       DO 40 I = 1, SPM1
 | |
|          SUBMAT = IWORK( I ) + 1
 | |
|          SMM1 = SUBMAT - 1
 | |
|          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
 | |
|          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
 | |
|    40 CONTINUE
 | |
| *
 | |
|       INDXQ = 4*N + 3
 | |
| *
 | |
| *     Set up workspaces for eigenvalues only/accumulate new vectors
 | |
| *     routine
 | |
| *
 | |
|       TEMP = LOG( REAL( N ) ) / LOG( TWO )
 | |
|       LGN = INT( TEMP )
 | |
|       IF( 2**LGN.LT.N )
 | |
|      $   LGN = LGN + 1
 | |
|       IF( 2**LGN.LT.N )
 | |
|      $   LGN = LGN + 1
 | |
|       IPRMPT = INDXQ + N + 1
 | |
|       IPERM = IPRMPT + N*LGN
 | |
|       IQPTR = IPERM + N*LGN
 | |
|       IGIVPT = IQPTR + N + 2
 | |
|       IGIVCL = IGIVPT + N*LGN
 | |
| *
 | |
|       IGIVNM = 1
 | |
|       IQ = IGIVNM + 2*N*LGN
 | |
|       IWREM = IQ + N**2 + 1
 | |
| *     Initialize pointers
 | |
|       DO 50 I = 0, SUBPBS
 | |
|          IWORK( IPRMPT+I ) = 1
 | |
|          IWORK( IGIVPT+I ) = 1
 | |
|    50 CONTINUE
 | |
|       IWORK( IQPTR ) = 1
 | |
| *
 | |
| *     Solve each submatrix eigenproblem at the bottom of the divide and
 | |
| *     conquer tree.
 | |
| *
 | |
|       CURR = 0
 | |
|       DO 70 I = 0, SPM1
 | |
|          IF( I.EQ.0 ) THEN
 | |
|             SUBMAT = 1
 | |
|             MATSIZ = IWORK( 1 )
 | |
|          ELSE
 | |
|             SUBMAT = IWORK( I ) + 1
 | |
|             MATSIZ = IWORK( I+1 ) - IWORK( I )
 | |
|          END IF
 | |
|          LL = IQ - 1 + IWORK( IQPTR+CURR )
 | |
|          CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
 | |
|      $                RWORK( LL ), MATSIZ, RWORK, INFO )
 | |
|          CALL CLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
 | |
|      $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
 | |
|      $                RWORK( IWREM ) )
 | |
|          IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
 | |
|          CURR = CURR + 1
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
 | |
|             RETURN
 | |
|          END IF
 | |
|          K = 1
 | |
|          DO 60 J = SUBMAT, IWORK( I+1 )
 | |
|             IWORK( INDXQ+J ) = K
 | |
|             K = K + 1
 | |
|    60    CONTINUE
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Successively merge eigensystems of adjacent submatrices
 | |
| *     into eigensystem for the corresponding larger matrix.
 | |
| *
 | |
| *     while ( SUBPBS > 1 )
 | |
| *
 | |
|       CURLVL = 1
 | |
|    80 CONTINUE
 | |
|       IF( SUBPBS.GT.1 ) THEN
 | |
|          SPM2 = SUBPBS - 2
 | |
|          DO 90 I = 0, SPM2, 2
 | |
|             IF( I.EQ.0 ) THEN
 | |
|                SUBMAT = 1
 | |
|                MATSIZ = IWORK( 2 )
 | |
|                MSD2 = IWORK( 1 )
 | |
|                CURPRB = 0
 | |
|             ELSE
 | |
|                SUBMAT = IWORK( I ) + 1
 | |
|                MATSIZ = IWORK( I+2 ) - IWORK( I )
 | |
|                MSD2 = MATSIZ / 2
 | |
|                CURPRB = CURPRB + 1
 | |
|             END IF
 | |
| *
 | |
| *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
 | |
| *     into an eigensystem of size MATSIZ.  CLAED7 handles the case
 | |
| *     when the eigenvectors of a full or band Hermitian matrix (which
 | |
| *     was reduced to tridiagonal form) are desired.
 | |
| *
 | |
| *     I am free to use Q as a valuable working space until Loop 150.
 | |
| *
 | |
|             CALL CLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
 | |
|      $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
 | |
|      $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
 | |
|      $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
 | |
|      $                   IWORK( IPERM ), IWORK( IGIVPT ),
 | |
|      $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
 | |
|      $                   Q( 1, SUBMAT ), RWORK( IWREM ),
 | |
|      $                   IWORK( SUBPBS+1 ), INFO )
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
 | |
|                RETURN
 | |
|             END IF
 | |
|             IWORK( I / 2+1 ) = IWORK( I+2 )
 | |
|    90    CONTINUE
 | |
|          SUBPBS = SUBPBS / 2
 | |
|          CURLVL = CURLVL + 1
 | |
|          GO TO 80
 | |
|       END IF
 | |
| *
 | |
| *     end while
 | |
| *
 | |
| *     Re-merge the eigenvalues/vectors which were deflated at the final
 | |
| *     merge step.
 | |
| *
 | |
|       DO 100 I = 1, N
 | |
|          J = IWORK( INDXQ+I )
 | |
|          RWORK( I ) = D( J )
 | |
|          CALL CCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
 | |
|   100 CONTINUE
 | |
|       CALL SCOPY( N, RWORK, 1, D, 1 )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAED0
 | |
| *
 | |
|       END
 |