418 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			418 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLABRD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clabrd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clabrd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clabrd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
 | |
| *                          LDY )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDX, LDY, M, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * ), E( * )
 | |
| *       COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
 | |
| *      $                   Y( LDY, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLABRD reduces the first NB rows and columns of a complex general
 | |
| *> m by n matrix A to upper or lower real bidiagonal form by a unitary
 | |
| *> transformation Q**H * A * P, and returns the matrices X and Y which
 | |
| *> are needed to apply the transformation to the unreduced part of A.
 | |
| *>
 | |
| *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
 | |
| *> bidiagonal form.
 | |
| *>
 | |
| *> This is an auxiliary routine called by CGEBRD
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows in the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns in the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The number of leading rows and columns of A to be reduced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the m by n general matrix to be reduced.
 | |
| *>          On exit, the first NB rows and columns of the matrix are
 | |
| *>          overwritten; the rest of the array is unchanged.
 | |
| *>          If m >= n, elements on and below the diagonal in the first NB
 | |
| *>            columns, with the array TAUQ, represent the unitary
 | |
| *>            matrix Q as a product of elementary reflectors; and
 | |
| *>            elements above the diagonal in the first NB rows, with the
 | |
| *>            array TAUP, represent the unitary matrix P as a product
 | |
| *>            of elementary reflectors.
 | |
| *>          If m < n, elements below the diagonal in the first NB
 | |
| *>            columns, with the array TAUQ, represent the unitary
 | |
| *>            matrix Q as a product of elementary reflectors, and
 | |
| *>            elements on and above the diagonal in the first NB rows,
 | |
| *>            with the array TAUP, represent the unitary matrix P as
 | |
| *>            a product of elementary reflectors.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (NB)
 | |
| *>          The diagonal elements of the first NB rows and columns of
 | |
| *>          the reduced matrix.  D(i) = A(i,i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (NB)
 | |
| *>          The off-diagonal elements of the first NB rows and columns of
 | |
| *>          the reduced matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUQ
 | |
| *> \verbatim
 | |
| *>          TAUQ is COMPLEX array, dimension (NB)
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the unitary matrix Q. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUP
 | |
| *> \verbatim
 | |
| *>          TAUP is COMPLEX array, dimension (NB)
 | |
| *>          The scalar factors of the elementary reflectors which
 | |
| *>          represent the unitary matrix P. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (LDX,NB)
 | |
| *>          The m-by-nb matrix X required to update the unreduced part
 | |
| *>          of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X. LDX >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX array, dimension (LDY,NB)
 | |
| *>          The n-by-nb matrix Y required to update the unreduced part
 | |
| *>          of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDY
 | |
| *> \verbatim
 | |
| *>          LDY is INTEGER
 | |
| *>          The leading dimension of the array Y. LDY >= max(1,N).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrices Q and P are represented as products of elementary
 | |
| *>  reflectors:
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
 | |
| *>
 | |
| *>  Each H(i) and G(i) has the form:
 | |
| *>
 | |
| *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
 | |
| *>
 | |
| *>  where tauq and taup are complex scalars, and v and u are complex
 | |
| *>  vectors.
 | |
| *>
 | |
| *>  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
 | |
| *>  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
 | |
| *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 | |
| *>
 | |
| *>  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
 | |
| *>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
 | |
| *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 | |
| *>
 | |
| *>  The elements of the vectors v and u together form the m-by-nb matrix
 | |
| *>  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
 | |
| *>  the transformation to the unreduced part of the matrix, using a block
 | |
| *>  update of the form:  A := A - V*Y**H - X*U**H.
 | |
| *>
 | |
| *>  The contents of A on exit are illustrated by the following examples
 | |
| *>  with nb = 2:
 | |
| *>
 | |
| *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
 | |
| *>
 | |
| *>    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
 | |
| *>    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
 | |
| *>    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
 | |
| *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
 | |
| *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
 | |
| *>    (  v1  v2  a   a   a  )
 | |
| *>
 | |
| *>  where a denotes an element of the original matrix which is unchanged,
 | |
| *>  vi denotes an element of the vector defining H(i), and ui an element
 | |
| *>  of the vector defining G(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
 | |
|      $                   LDY )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDX, LDY, M, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * ), E( * )
 | |
|       COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
 | |
|      $                   Y( LDY, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ZERO, ONE
 | |
|       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       COMPLEX            ALPHA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMV, CLACGV, CLARFG, CSCAL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        Reduce to upper bidiagonal form
 | |
| *
 | |
|          DO 10 I = 1, NB
 | |
| *
 | |
| *           Update A(i:m,i)
 | |
| *
 | |
|             CALL CLACGV( I-1, Y( I, 1 ), LDY )
 | |
|             CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
 | |
|      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
 | |
|             CALL CLACGV( I-1, Y( I, 1 ), LDY )
 | |
|             CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
 | |
|      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
 | |
| *
 | |
| *           Generate reflection Q(i) to annihilate A(i+1:m,i)
 | |
| *
 | |
|             ALPHA = A( I, I )
 | |
|             CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
 | |
|      $                   TAUQ( I ) )
 | |
|             D( I ) = REAL( ALPHA )
 | |
|             IF( I.LT.N ) THEN
 | |
|                A( I, I ) = ONE
 | |
| *
 | |
| *              Compute Y(i+1:n,i)
 | |
| *
 | |
|                CALL CGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
 | |
|      $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
 | |
|      $                     Y( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
 | |
|      $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
 | |
|      $                     Y( 1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
 | |
|      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
 | |
|      $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
 | |
|      $                     Y( 1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
 | |
|      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
 | |
|      $                     Y( I+1, I ), 1 )
 | |
|                CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
 | |
| *
 | |
| *              Update A(i,i+1:n)
 | |
| *
 | |
|                CALL CLACGV( N-I, A( I, I+1 ), LDA )
 | |
|                CALL CLACGV( I, A( I, 1 ), LDA )
 | |
|                CALL CGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
 | |
|      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
 | |
|                CALL CLACGV( I, A( I, 1 ), LDA )
 | |
|                CALL CLACGV( I-1, X( I, 1 ), LDX )
 | |
|                CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
 | |
|      $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
 | |
|      $                     A( I, I+1 ), LDA )
 | |
|                CALL CLACGV( I-1, X( I, 1 ), LDX )
 | |
| *
 | |
| *              Generate reflection P(i) to annihilate A(i,i+2:n)
 | |
| *
 | |
|                ALPHA = A( I, I+1 )
 | |
|                CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ),
 | |
|      $                      LDA, TAUP( I ) )
 | |
|                E( I ) = REAL( ALPHA )
 | |
|                A( I, I+1 ) = ONE
 | |
| *
 | |
| *              Compute X(i+1:m,i)
 | |
| *
 | |
|                CALL CGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
 | |
|      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', N-I, I, ONE,
 | |
|      $                     Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
 | |
|      $                     X( 1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
 | |
|      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
 | |
|      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
 | |
|      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
 | |
|                CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
 | |
|                CALL CLACGV( N-I, A( I, I+1 ), LDA )
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Reduce to lower bidiagonal form
 | |
| *
 | |
|          DO 20 I = 1, NB
 | |
| *
 | |
| *           Update A(i,i:n)
 | |
| *
 | |
|             CALL CLACGV( N-I+1, A( I, I ), LDA )
 | |
|             CALL CLACGV( I-1, A( I, 1 ), LDA )
 | |
|             CALL CGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
 | |
|      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
 | |
|             CALL CLACGV( I-1, A( I, 1 ), LDA )
 | |
|             CALL CLACGV( I-1, X( I, 1 ), LDX )
 | |
|             CALL CGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
 | |
|      $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
 | |
|      $                  LDA )
 | |
|             CALL CLACGV( I-1, X( I, 1 ), LDX )
 | |
| *
 | |
| *           Generate reflection P(i) to annihilate A(i,i+1:n)
 | |
| *
 | |
|             ALPHA = A( I, I )
 | |
|             CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
 | |
|      $                   TAUP( I ) )
 | |
|             D( I ) = REAL( ALPHA )
 | |
|             IF( I.LT.M ) THEN
 | |
|                A( I, I ) = ONE
 | |
| *
 | |
| *              Compute X(i+1:m,i)
 | |
| *
 | |
|                CALL CGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
 | |
|      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
 | |
|      $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
 | |
|      $                     X( 1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
 | |
|      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
 | |
|      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
 | |
|      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
 | |
|                CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
 | |
|                CALL CLACGV( N-I+1, A( I, I ), LDA )
 | |
| *
 | |
| *              Update A(i+1:m,i)
 | |
| *
 | |
|                CALL CLACGV( I-1, Y( I, 1 ), LDY )
 | |
|                CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
 | |
|      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
 | |
|                CALL CLACGV( I-1, Y( I, 1 ), LDY )
 | |
|                CALL CGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
 | |
|      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
 | |
| *
 | |
| *              Generate reflection Q(i) to annihilate A(i+2:m,i)
 | |
| *
 | |
|                ALPHA = A( I+1, I )
 | |
|                CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
 | |
|      $                      TAUQ( I ) )
 | |
|                E( I ) = REAL( ALPHA )
 | |
|                A( I+1, I ) = ONE
 | |
| *
 | |
| *              Compute Y(i+1:n,i)
 | |
| *
 | |
|                CALL CGEMV( 'Conjugate transpose', M-I, N-I, ONE,
 | |
|      $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
 | |
|      $                     Y( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', M-I, I-1, ONE,
 | |
|      $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
 | |
|      $                     Y( 1, I ), 1 )
 | |
|                CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
 | |
|      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', M-I, I, ONE,
 | |
|      $                     X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
 | |
|      $                     Y( 1, I ), 1 )
 | |
|                CALL CGEMV( 'Conjugate transpose', I, N-I, -ONE,
 | |
|      $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
 | |
|      $                     Y( I+1, I ), 1 )
 | |
|                CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
 | |
|             ELSE
 | |
|                CALL CLACGV( N-I+1, A( I, I ), LDA )
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLABRD
 | |
| *
 | |
|       END
 |