968 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			968 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b CLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate err
 | |
| or bounds. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CLA_HEAMV + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hea
 | |
| mv.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hea
 | |
| mv.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hea
 | |
| mv.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CLA_HEAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, */
 | |
| /*                             INCY ) */
 | |
| 
 | |
| /*       REAL               ALPHA, BETA */
 | |
| /*       INTEGER            INCX, INCY, LDA, N, UPLO */
 | |
| /*       COMPLEX            A( LDA, * ), X( * ) */
 | |
| /*       REAL               Y( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CLA_SYAMV  performs the matrix-vector operation */
 | |
| /* > */
 | |
| /* >         y := alpha*abs(A)*abs(x) + beta*abs(y), */
 | |
| /* > */
 | |
| /* > where alpha and beta are scalars, x and y are vectors and A is an */
 | |
| /* > n by n symmetric matrix. */
 | |
| /* > */
 | |
| /* > This function is primarily used in calculating error bounds. */
 | |
| /* > To protect against underflow during evaluation, components in */
 | |
| /* > the resulting vector are perturbed away from zero by (N+1) */
 | |
| /* > times the underflow threshold.  To prevent unnecessarily large */
 | |
| /* > errors for block-structure embedded in general matrices, */
 | |
| /* > "symbolically" zero components are not perturbed.  A zero */
 | |
| /* > entry is considered "symbolic" if all multiplications involved */
 | |
| /* > in computing that entry have at least one zero multiplicand. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is INTEGER */
 | |
| /* >           On entry, UPLO specifies whether the upper or lower */
 | |
| /* >           triangular part of the array A is to be referenced as */
 | |
| /* >           follows: */
 | |
| /* > */
 | |
| /* >              UPLO = BLAS_UPPER   Only the upper triangular part of A */
 | |
| /* >                                  is to be referenced. */
 | |
| /* > */
 | |
| /* >              UPLO = BLAS_LOWER   Only the lower triangular part of A */
 | |
| /* >                                  is to be referenced. */
 | |
| /* > */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           On entry, N specifies the number of columns of the matrix A. */
 | |
| /* >           N must be at least zero. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is REAL . */
 | |
| /* >           On entry, ALPHA specifies the scalar alpha. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension ( LDA, n ). */
 | |
| /* >           Before entry, the leading m by n part of the array A must */
 | |
| /* >           contain the matrix of coefficients. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >           On entry, LDA specifies the first dimension of A as declared */
 | |
| /* >           in the calling (sub) program. LDA must be at least */
 | |
| /* >           f2cmax( 1, n ). */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX array, dimension */
 | |
| /* >           ( 1 + ( n - 1 )*abs( INCX ) ) */
 | |
| /* >           Before entry, the incremented array X must contain the */
 | |
| /* >           vector x. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] INCX */
 | |
| /* > \verbatim */
 | |
| /* >          INCX is INTEGER */
 | |
| /* >           On entry, INCX specifies the increment for the elements of */
 | |
| /* >           X. INCX must not be zero. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL . */
 | |
| /* >           On entry, BETA specifies the scalar beta. When BETA is */
 | |
| /* >           supplied as zero then Y need not be set on input. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Y */
 | |
| /* > \verbatim */
 | |
| /* >          Y is REAL array, dimension */
 | |
| /* >           ( 1 + ( n - 1 )*abs( INCY ) ) */
 | |
| /* >           Before entry with BETA non-zero, the incremented array Y */
 | |
| /* >           must contain the vector y. On exit, Y is overwritten by the */
 | |
| /* >           updated vector y. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] INCY */
 | |
| /* > \verbatim */
 | |
| /* >          INCY is INTEGER */
 | |
| /* >           On entry, INCY specifies the increment for the elements of */
 | |
| /* >           Y. INCY must not be zero. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup complexHEcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Level 2 Blas routine. */
 | |
| /* > */
 | |
| /* >  -- Written on 22-October-1986. */
 | |
| /* >     Jack Dongarra, Argonne National Lab. */
 | |
| /* >     Jeremy Du Croz, Nag Central Office. */
 | |
| /* >     Sven Hammarling, Nag Central Office. */
 | |
| /* >     Richard Hanson, Sandia National Labs. */
 | |
| /* >  -- Modified for the absolute-value product, April 2006 */
 | |
| /* >     Jason Riedy, UC Berkeley */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cla_heamv_(integer *uplo, integer *n, real *alpha, 
 | |
| 	complex *a, integer *lda, complex *x, integer *incx, real *beta, real 
 | |
| 	*y, integer *incy)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer info;
 | |
|     real temp, safe1;
 | |
|     integer i__, j;
 | |
|     logical symb_zero__;
 | |
|     integer iy, jx, kx, ky;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilauplo_(char *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --x;
 | |
|     --y;
 | |
| 
 | |
|     /* Function Body */
 | |
|     info = 0;
 | |
|     if (*uplo != ilauplo_("U") && *uplo != ilauplo_("L")
 | |
| 	    ) {
 | |
| 	info = 1;
 | |
|     } else if (*n < 0) {
 | |
| 	info = 2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	info = 5;
 | |
|     } else if (*incx == 0) {
 | |
| 	info = 7;
 | |
|     } else if (*incy == 0) {
 | |
| 	info = 10;
 | |
|     }
 | |
|     if (info != 0) {
 | |
| 	xerbla_("CHEMV ", &info, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*n == 0 || *alpha == 0.f && *beta == 1.f) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Set up the start points in  X  and  Y. */
 | |
| 
 | |
|     if (*incx > 0) {
 | |
| 	kx = 1;
 | |
|     } else {
 | |
| 	kx = 1 - (*n - 1) * *incx;
 | |
|     }
 | |
|     if (*incy > 0) {
 | |
| 	ky = 1;
 | |
|     } else {
 | |
| 	ky = 1 - (*n - 1) * *incy;
 | |
|     }
 | |
| 
 | |
| /*     Set SAFE1 essentially to be the underflow threshold times the */
 | |
| /*     number of additions in each row. */
 | |
| 
 | |
|     safe1 = slamch_("Safe minimum");
 | |
|     safe1 = (*n + 1) * safe1;
 | |
| 
 | |
| /*     Form  y := alpha*abs(A)*abs(x) + beta*abs(y). */
 | |
| 
 | |
| /*     The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to */
 | |
| /*     the inexact flag.  Still doesn't help change the iteration order */
 | |
| /*     to per-column. */
 | |
| 
 | |
|     iy = ky;
 | |
|     if (*incx == 1) {
 | |
| 	if (*uplo == ilauplo_("U")) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		if (*beta == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		    y[iy] = 0.f;
 | |
| 		} else if (y[iy] == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		} else {
 | |
| 		    symb_zero__ = FALSE_;
 | |
| 		    y[iy] = *beta * (r__1 = y[iy], abs(r__1));
 | |
| 		}
 | |
| 		if (*alpha != 0.f) {
 | |
| 		    i__2 = i__;
 | |
| 		    for (j = 1; j <= i__2; ++j) {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[j + i__ * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = j;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[j]), abs(r__2))) * temp;
 | |
| 		    }
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[i__ + j * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = j;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[j]), abs(r__2))) * temp;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (! symb_zero__) {
 | |
| 		    y[iy] += r_sign(&safe1, &y[iy]);
 | |
| 		}
 | |
| 		iy += *incy;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		if (*beta == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		    y[iy] = 0.f;
 | |
| 		} else if (y[iy] == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		} else {
 | |
| 		    symb_zero__ = FALSE_;
 | |
| 		    y[iy] = *beta * (r__1 = y[iy], abs(r__1));
 | |
| 		}
 | |
| 		if (*alpha != 0.f) {
 | |
| 		    i__2 = i__;
 | |
| 		    for (j = 1; j <= i__2; ++j) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[i__ + j * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = j;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[j]), abs(r__2))) * temp;
 | |
| 		    }
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[j + i__ * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = j;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[j]), abs(r__2))) * temp;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (! symb_zero__) {
 | |
| 		    y[iy] += r_sign(&safe1, &y[iy]);
 | |
| 		}
 | |
| 		iy += *incy;
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| 	if (*uplo == ilauplo_("U")) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		if (*beta == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		    y[iy] = 0.f;
 | |
| 		} else if (y[iy] == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		} else {
 | |
| 		    symb_zero__ = FALSE_;
 | |
| 		    y[iy] = *beta * (r__1 = y[iy], abs(r__1));
 | |
| 		}
 | |
| 		jx = kx;
 | |
| 		if (*alpha != 0.f) {
 | |
| 		    i__2 = i__;
 | |
| 		    for (j = 1; j <= i__2; ++j) {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[j + i__ * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = jx;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[jx]), abs(r__2))) * temp;
 | |
| 			jx += *incx;
 | |
| 		    }
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[i__ + j * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = jx;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[jx]), abs(r__2))) * temp;
 | |
| 			jx += *incx;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (! symb_zero__) {
 | |
| 		    y[iy] += r_sign(&safe1, &y[iy]);
 | |
| 		}
 | |
| 		iy += *incy;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		if (*beta == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		    y[iy] = 0.f;
 | |
| 		} else if (y[iy] == 0.f) {
 | |
| 		    symb_zero__ = TRUE_;
 | |
| 		} else {
 | |
| 		    symb_zero__ = FALSE_;
 | |
| 		    y[iy] = *beta * (r__1 = y[iy], abs(r__1));
 | |
| 		}
 | |
| 		jx = kx;
 | |
| 		if (*alpha != 0.f) {
 | |
| 		    i__2 = i__;
 | |
| 		    for (j = 1; j <= i__2; ++j) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[i__ + j * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = jx;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[jx]), abs(r__2))) * temp;
 | |
| 			jx += *incx;
 | |
| 		    }
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			temp = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | |
| 				&a[j + i__ * a_dim1]), abs(r__2));
 | |
| 			i__3 = j;
 | |
| 			symb_zero__ = symb_zero__ && (x[i__3].r == 0.f && x[
 | |
| 				i__3].i == 0.f || temp == 0.f);
 | |
| 			i__3 = jx;
 | |
| 			y[iy] += *alpha * ((r__1 = x[i__3].r, abs(r__1)) + (
 | |
| 				r__2 = r_imag(&x[jx]), abs(r__2))) * temp;
 | |
| 			jx += *incx;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (! symb_zero__) {
 | |
| 		    y[iy] += r_sign(&safe1, &y[iy]);
 | |
| 		}
 | |
| 		iy += *incy;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CLA_HEAMV */
 | |
| 
 | |
| } /* cla_heamv__ */
 | |
| 
 |