1050 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1050 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b2 = {1.f,0.f};
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief \b CHETRF_AA */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CHETRF_AA + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrf_
 | |
| aa.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrf_
 | |
| aa.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrf_
 | |
| aa.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER    UPLO */
 | |
| /*       INTEGER      N, LDA, LWORK, INFO */
 | |
| /*       INTEGER      IPIV( * ) */
 | |
| /*       COMPLEX      A( LDA, * ), WORK( * ) */
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CHETRF_AA computes the factorization of a complex hermitian matrix A */
 | |
| /* > using the Aasen's algorithm.  The form of the factorization is */
 | |
| /* > */
 | |
| /* >    A = U**H*T*U  or  A = L*T*L**H */
 | |
| /* > */
 | |
| /* > where U (or L) is a product of permutation and unit upper (lower) */
 | |
| /* > triangular matrices, and T is a hermitian tridiagonal matrix. */
 | |
| /* > */
 | |
| /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA,N) */
 | |
| /* >          On entry, the hermitian matrix A.  If UPLO = 'U', the leading */
 | |
| /* >          N-by-N upper triangular part of A contains the upper */
 | |
| /* >          triangular part of the matrix A, and the strictly lower */
 | |
| /* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | |
| /* >          leading N-by-N lower triangular part of A contains the lower */
 | |
| /* >          triangular part of the matrix A, and the strictly upper */
 | |
| /* >          triangular part of A is not referenced. */
 | |
| /* > */
 | |
| /* >          On exit, the tridiagonal matrix is stored in the diagonals */
 | |
| /* >          and the subdiagonals of A just below (or above) the diagonals, */
 | |
| /* >          and L is stored below (or above) the subdiaonals, when UPLO */
 | |
| /* >          is 'L' (or 'U'). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          On exit, it contains the details of the interchanges, i.e., */
 | |
| /* >          the row and column k of A were interchanged with the */
 | |
| /* >          row and column IPIV(k). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The length of WORK.  LWORK >= 2*N. For optimum performance */
 | |
| /* >          LWORK >= N*(1+NB), where NB is the optimal blocksize. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2017 */
 | |
| 
 | |
| /* > \ingroup complexHEcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void chetrf_aa_(char *uplo, integer *n, complex *a, integer *
 | |
| 	lda, integer *ipiv, complex *work, integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
 | |
|     real r__1;
 | |
|     complex q__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     extern /* Subroutine */ void clahef_aa_(char *, integer *, integer *, 
 | |
| 	    integer *, complex *, integer *, integer *, complex *, integer *, 
 | |
| 	    complex *);
 | |
|     integer j;
 | |
|     complex alpha;
 | |
|     extern /* Subroutine */ void cscal_(integer *, complex *, complex *, 
 | |
| 	    integer *), cgemm_(char *, char *, integer *, integer *, integer *
 | |
| 	    , complex *, complex *, integer *, complex *, integer *, complex *
 | |
| 	    , complex *, integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void ccopy_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *), cswap_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *);
 | |
|     logical upper;
 | |
|     integer k1, k2, j1, j2, j3, jb, nb, mj, nj;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     integer lwkopt;
 | |
|     logical lquery;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2017 */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Determine the block size */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --ipiv;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     nb = ilaenv_(&c__1, "CHETRF_AA", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)9, 
 | |
| 	    (ftnlen)1);
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     lquery = *lwork == -1;
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     } else if (*lwork < *n << 1 && ! lquery) {
 | |
| 	*info = -7;
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	lwkopt = (nb + 1) * *n;
 | |
| 	work[1].r = (real) lwkopt, work[1].i = 0.f;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CHETRF_AA", &i__1, (ftnlen)9);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
|     ipiv[1] = 1;
 | |
|     if (*n == 1) {
 | |
| 	i__1 = a_dim1 + 1;
 | |
| 	i__2 = a_dim1 + 1;
 | |
| 	r__1 = a[i__2].r;
 | |
| 	a[i__1].r = r__1, a[i__1].i = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Adjust block size based on the workspace size */
 | |
| 
 | |
|     if (*lwork < (nb + 1) * *n) {
 | |
| 	nb = (*lwork - *n) / *n;
 | |
|     }
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        ..................................................... */
 | |
| /*        Factorize A as U**H*D*U using the upper triangle of A */
 | |
| /*        ..................................................... */
 | |
| 
 | |
| /*        copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) */
 | |
| 
 | |
| 	ccopy_(n, &a[a_dim1 + 1], lda, &work[1], &c__1);
 | |
| 
 | |
| /*        J is the main loop index, increasing from 1 to N in steps of */
 | |
| /*        JB, where JB is the number of columns factorized by CLAHEF; */
 | |
| /*        JB is either NB, or N-J+1 for the last block */
 | |
| 
 | |
| 	j = 0;
 | |
| L10:
 | |
| 	if (j >= *n) {
 | |
| 	    goto L20;
 | |
| 	}
 | |
| 
 | |
| /*        each step of the main loop */
 | |
| /*         J is the last column of the previous panel */
 | |
| /*         J1 is the first column of the current panel */
 | |
| /*         K1 identifies if the previous column of the panel has been */
 | |
| /*          explicitly stored, e.g., K1=1 for the first panel, and */
 | |
| /*          K1=0 for the rest */
 | |
| 
 | |
| 	j1 = j + 1;
 | |
| /* Computing MIN */
 | |
| 	i__1 = *n - j1 + 1;
 | |
| 	jb = f2cmin(i__1,nb);
 | |
| 	k1 = f2cmax(1,j) - j;
 | |
| 
 | |
| /*        Panel factorization */
 | |
| 
 | |
| 	i__1 = 2 - k1;
 | |
| 	i__2 = *n - j;
 | |
| 	clahef_aa_(uplo, &i__1, &i__2, &jb, &a[f2cmax(1,j) + (j + 1) * a_dim1], 
 | |
| 		lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
 | |
| 		;
 | |
| 
 | |
| /*        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__2 = *n, i__3 = j + jb + 1;
 | |
| 	i__1 = f2cmin(i__2,i__3);
 | |
| 	for (j2 = j + 2; j2 <= i__1; ++j2) {
 | |
| 	    ipiv[j2] += j;
 | |
| 	    if (j2 != ipiv[j2] && j1 - k1 > 2) {
 | |
| 		i__2 = j1 - k1 - 2;
 | |
| 		cswap_(&i__2, &a[j2 * a_dim1 + 1], &c__1, &a[ipiv[j2] * 
 | |
| 			a_dim1 + 1], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
| 	j += jb;
 | |
| 
 | |
| /*        Trailing submatrix update, where */
 | |
| /*         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and */
 | |
| /*         WORK stores the current block of the auxiriarly matrix H */
 | |
| 
 | |
| 	if (j < *n) {
 | |
| 
 | |
| /*          if the first panel and JB=1 (NB=1), then nothing to do */
 | |
| 
 | |
| 	    if (j1 > 1 || jb > 1) {
 | |
| 
 | |
| /*              Merge rank-1 update with BLAS-3 update */
 | |
| 
 | |
| 		r_cnjg(&q__1, &a[j + (j + 1) * a_dim1]);
 | |
| 		alpha.r = q__1.r, alpha.i = q__1.i;
 | |
| 		i__1 = j + (j + 1) * a_dim1;
 | |
| 		a[i__1].r = 1.f, a[i__1].i = 0.f;
 | |
| 		i__1 = *n - j;
 | |
| 		ccopy_(&i__1, &a[j - 1 + (j + 1) * a_dim1], lda, &work[j + 1 
 | |
| 			- j1 + 1 + jb * *n], &c__1);
 | |
| 		i__1 = *n - j;
 | |
| 		cscal_(&i__1, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
 | |
| 
 | |
| /*              K1 identifies if the previous column of the panel has been */
 | |
| /*               explicitly stored, e.g., K1=0 and K2=1 for the first panel, */
 | |
| /*               and K1=1 and K2=0 for the rest */
 | |
| 
 | |
| 		if (j1 > 1) {
 | |
| 
 | |
| /*                 Not first panel */
 | |
| 
 | |
| 		    k2 = 1;
 | |
| 		} else {
 | |
| 
 | |
| /*                 First panel */
 | |
| 
 | |
| 		    k2 = 0;
 | |
| 
 | |
| /*                 First update skips the first column */
 | |
| 
 | |
| 		    --jb;
 | |
| 		}
 | |
| 
 | |
| 		i__1 = *n;
 | |
| 		i__2 = nb;
 | |
| 		for (j2 = j + 1; i__2 < 0 ? j2 >= i__1 : j2 <= i__1; j2 += 
 | |
| 			i__2) {
 | |
| /* Computing MIN */
 | |
| 		    i__3 = nb, i__4 = *n - j2 + 1;
 | |
| 		    nj = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*                 Update (J2, J2) diagonal block with CGEMV */
 | |
| 
 | |
| 		    j3 = j2;
 | |
| 		    for (mj = nj - 1; mj >= 1; --mj) {
 | |
| 			i__3 = jb + 1;
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			cgemm_("Conjugate transpose", "Transpose", &c__1, &mj,
 | |
| 				 &i__3, &q__1, &a[j1 - k2 + j3 * a_dim1], lda,
 | |
| 				 &work[j3 - j1 + 1 + k1 * *n], n, &c_b2, &a[
 | |
| 				j3 + j3 * a_dim1], lda)
 | |
| 				;
 | |
| 			++j3;
 | |
| 		    }
 | |
| 
 | |
| /*                 Update off-diagonal block of J2-th block row with CGEMM */
 | |
| 
 | |
| 		    i__3 = *n - j3 + 1;
 | |
| 		    i__4 = jb + 1;
 | |
| 		    q__1.r = -1.f, q__1.i = 0.f;
 | |
| 		    cgemm_("Conjugate transpose", "Transpose", &nj, &i__3, &
 | |
| 			    i__4, &q__1, &a[j1 - k2 + j2 * a_dim1], lda, &
 | |
| 			    work[j3 - j1 + 1 + k1 * *n], n, &c_b2, &a[j2 + j3 
 | |
| 			    * a_dim1], lda);
 | |
| 		}
 | |
| 
 | |
| /*              Recover T( J, J+1 ) */
 | |
| 
 | |
| 		i__2 = j + (j + 1) * a_dim1;
 | |
| 		r_cnjg(&q__1, &alpha);
 | |
| 		a[i__2].r = q__1.r, a[i__2].i = q__1.i;
 | |
| 	    }
 | |
| 
 | |
| /*           WORK(J+1, 1) stores H(J+1, 1) */
 | |
| 
 | |
| 	    i__2 = *n - j;
 | |
| 	    ccopy_(&i__2, &a[j + 1 + (j + 1) * a_dim1], lda, &work[1], &c__1);
 | |
| 	}
 | |
| 	goto L10;
 | |
|     } else {
 | |
| 
 | |
| /*        ..................................................... */
 | |
| /*        Factorize A as L*D*L**H using the lower triangle of A */
 | |
| /*        ..................................................... */
 | |
| 
 | |
| /*        copy first column A(1:N, 1) into H(1:N, 1) */
 | |
| /*         (stored in WORK(1:N)) */
 | |
| 
 | |
| 	ccopy_(n, &a[a_dim1 + 1], &c__1, &work[1], &c__1);
 | |
| 
 | |
| /*        J is the main loop index, increasing from 1 to N in steps of */
 | |
| /*        JB, where JB is the number of columns factorized by CLAHEF; */
 | |
| /*        JB is either NB, or N-J+1 for the last block */
 | |
| 
 | |
| 	j = 0;
 | |
| L11:
 | |
| 	if (j >= *n) {
 | |
| 	    goto L20;
 | |
| 	}
 | |
| 
 | |
| /*        each step of the main loop */
 | |
| /*         J is the last column of the previous panel */
 | |
| /*         J1 is the first column of the current panel */
 | |
| /*         K1 identifies if the previous column of the panel has been */
 | |
| /*          explicitly stored, e.g., K1=1 for the first panel, and */
 | |
| /*          K1=0 for the rest */
 | |
| 
 | |
| 	j1 = j + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = *n - j1 + 1;
 | |
| 	jb = f2cmin(i__2,nb);
 | |
| 	k1 = f2cmax(1,j) - j;
 | |
| 
 | |
| /*        Panel factorization */
 | |
| 
 | |
| 	i__2 = 2 - k1;
 | |
| 	i__1 = *n - j;
 | |
| 	clahef_aa_(uplo, &i__2, &i__1, &jb, &a[j + 1 + f2cmax(1,j) * a_dim1], 
 | |
| 		lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
 | |
| 		;
 | |
| 
 | |
| /*        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__1 = *n, i__3 = j + jb + 1;
 | |
| 	i__2 = f2cmin(i__1,i__3);
 | |
| 	for (j2 = j + 2; j2 <= i__2; ++j2) {
 | |
| 	    ipiv[j2] += j;
 | |
| 	    if (j2 != ipiv[j2] && j1 - k1 > 2) {
 | |
| 		i__1 = j1 - k1 - 2;
 | |
| 		cswap_(&i__1, &a[j2 + a_dim1], lda, &a[ipiv[j2] + a_dim1], 
 | |
| 			lda);
 | |
| 	    }
 | |
| 	}
 | |
| 	j += jb;
 | |
| 
 | |
| /*        Trailing submatrix update, where */
 | |
| /*          A(J2+1, J1-1) stores L(J2+1, J1) and */
 | |
| /*          WORK(J2+1, 1) stores H(J2+1, 1) */
 | |
| 
 | |
| 	if (j < *n) {
 | |
| 
 | |
| /*          if the first panel and JB=1 (NB=1), then nothing to do */
 | |
| 
 | |
| 	    if (j1 > 1 || jb > 1) {
 | |
| 
 | |
| /*              Merge rank-1 update with BLAS-3 update */
 | |
| 
 | |
| 		r_cnjg(&q__1, &a[j + 1 + j * a_dim1]);
 | |
| 		alpha.r = q__1.r, alpha.i = q__1.i;
 | |
| 		i__2 = j + 1 + j * a_dim1;
 | |
| 		a[i__2].r = 1.f, a[i__2].i = 0.f;
 | |
| 		i__2 = *n - j;
 | |
| 		ccopy_(&i__2, &a[j + 1 + (j - 1) * a_dim1], &c__1, &work[j + 
 | |
| 			1 - j1 + 1 + jb * *n], &c__1);
 | |
| 		i__2 = *n - j;
 | |
| 		cscal_(&i__2, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
 | |
| 
 | |
| /*              K1 identifies if the previous column of the panel has been */
 | |
| /*               explicitly stored, e.g., K1=0 and K2=1 for the first panel, */
 | |
| /*               and K1=1 and K2=0 for the rest */
 | |
| 
 | |
| 		if (j1 > 1) {
 | |
| 
 | |
| /*                 Not first panel */
 | |
| 
 | |
| 		    k2 = 1;
 | |
| 		} else {
 | |
| 
 | |
| /*                 First panel */
 | |
| 
 | |
| 		    k2 = 0;
 | |
| 
 | |
| /*                 First update skips the first column */
 | |
| 
 | |
| 		    --jb;
 | |
| 		}
 | |
| 
 | |
| 		i__2 = *n;
 | |
| 		i__1 = nb;
 | |
| 		for (j2 = j + 1; i__1 < 0 ? j2 >= i__2 : j2 <= i__2; j2 += 
 | |
| 			i__1) {
 | |
| /* Computing MIN */
 | |
| 		    i__3 = nb, i__4 = *n - j2 + 1;
 | |
| 		    nj = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*                 Update (J2, J2) diagonal block with CGEMV */
 | |
| 
 | |
| 		    j3 = j2;
 | |
| 		    for (mj = nj - 1; mj >= 1; --mj) {
 | |
| 			i__3 = jb + 1;
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			cgemm_("No transpose", "Conjugate transpose", &mj, &
 | |
| 				c__1, &i__3, &q__1, &work[j3 - j1 + 1 + k1 * *
 | |
| 				n], n, &a[j3 + (j1 - k2) * a_dim1], lda, &
 | |
| 				c_b2, &a[j3 + j3 * a_dim1], lda);
 | |
| 			++j3;
 | |
| 		    }
 | |
| 
 | |
| /*                 Update off-diagonal block of J2-th block column with CGEMM */
 | |
| 
 | |
| 		    i__3 = *n - j3 + 1;
 | |
| 		    i__4 = jb + 1;
 | |
| 		    q__1.r = -1.f, q__1.i = 0.f;
 | |
| 		    cgemm_("No transpose", "Conjugate transpose", &i__3, &nj, 
 | |
| 			    &i__4, &q__1, &work[j3 - j1 + 1 + k1 * *n], n, &a[
 | |
| 			    j2 + (j1 - k2) * a_dim1], lda, &c_b2, &a[j3 + j2 *
 | |
| 			     a_dim1], lda);
 | |
| 		}
 | |
| 
 | |
| /*              Recover T( J+1, J ) */
 | |
| 
 | |
| 		i__1 = j + 1 + j * a_dim1;
 | |
| 		r_cnjg(&q__1, &alpha);
 | |
| 		a[i__1].r = q__1.r, a[i__1].i = q__1.i;
 | |
| 	    }
 | |
| 
 | |
| /*           WORK(J+1, 1) stores H(J+1, 1) */
 | |
| 
 | |
| 	    i__1 = *n - j;
 | |
| 	    ccopy_(&i__1, &a[j + 1 + (j + 1) * a_dim1], &c__1, &work[1], &
 | |
| 		    c__1);
 | |
| 	}
 | |
| 	goto L11;
 | |
|     }
 | |
| 
 | |
| L20:
 | |
|     return;
 | |
| 
 | |
| /*     End of CHETRF_AA */
 | |
| 
 | |
| } /* chetrf_aa__ */
 | |
| 
 |