1124 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1124 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {0.f,0.f};
 | |
| static integer c__2 = 2;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__3 = 3;
 | |
| static integer c__4 = 4;
 | |
| 
 | |
| /* > \brief \b CHBTRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric tridiagonal form T */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CHBTRD_HB2ST + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbtrd_
 | |
| hb2st.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbtrd_
 | |
| hb2st.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbtrd_
 | |
| hb2st.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, */
 | |
| /*                               D, E, HOUS, LHOUS, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       #if defined(_OPENMP) */
 | |
| /*       use omp_lib */
 | |
| /*       #endif */
 | |
| 
 | |
| /*       IMPLICIT NONE */
 | |
| 
 | |
| /*       CHARACTER          STAGE1, UPLO, VECT */
 | |
| /*       INTEGER            N, KD, IB, LDAB, LHOUS, LWORK, INFO */
 | |
| /*       REAL               D( * ), E( * ) */
 | |
| /*       COMPLEX            AB( LDAB, * ), HOUS( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CHETRD_HB2ST reduces a complex Hermitian band matrix A to real symmetric */
 | |
| /* > tridiagonal form T by a unitary similarity transformation: */
 | |
| /* > Q**H * A * Q = T. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] STAGE1 */
 | |
| /* > \verbatim */
 | |
| /* >          STAGE1 is CHARACTER*1 */
 | |
| /* >          = 'N':  "No": to mention that the stage 1 of the reduction */
 | |
| /* >                  from dense to band using the chetrd_he2hb routine */
 | |
| /* >                  was not called before this routine to reproduce AB. */
 | |
| /* >                  In other term this routine is called as standalone. */
 | |
| /* >          = 'Y':  "Yes": to mention that the stage 1 of the */
 | |
| /* >                  reduction from dense to band using the chetrd_he2hb */
 | |
| /* >                  routine has been called to produce AB (e.g., AB is */
 | |
| /* >                  the output of chetrd_he2hb. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VECT */
 | |
| /* > \verbatim */
 | |
| /* >          VECT is CHARACTER*1 */
 | |
| /* >          = 'N':  No need for the Housholder representation, */
 | |
| /* >                  and thus LHOUS is of size f2cmax(1, 4*N); */
 | |
| /* >          = 'V':  the Householder representation is needed to */
 | |
| /* >                  either generate or to apply Q later on, */
 | |
| /* >                  then LHOUS is to be queried and computed. */
 | |
| /* >                  (NOT AVAILABLE IN THIS RELEASE). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KD */
 | |
| /* > \verbatim */
 | |
| /* >          KD is INTEGER */
 | |
| /* >          The number of superdiagonals of the matrix A if UPLO = 'U', */
 | |
| /* >          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is COMPLEX array, dimension (LDAB,N) */
 | |
| /* >          On entry, the upper or lower triangle of the Hermitian band */
 | |
| /* >          matrix A, stored in the first KD+1 rows of the array.  The */
 | |
| /* >          j-th column of A is stored in the j-th column of the array AB */
 | |
| /* >          as follows: */
 | |
| /* >          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
 | |
| /* >          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=f2cmin(n,j+kd). */
 | |
| /* >          On exit, the diagonal elements of AB are overwritten by the */
 | |
| /* >          diagonal elements of the tridiagonal matrix T; if KD > 0, the */
 | |
| /* >          elements on the first superdiagonal (if UPLO = 'U') or the */
 | |
| /* >          first subdiagonal (if UPLO = 'L') are overwritten by the */
 | |
| /* >          off-diagonal elements of T; the rest of AB is overwritten by */
 | |
| /* >          values generated during the reduction. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDAB >= KD+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >          The diagonal elements of the tridiagonal matrix T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (N-1) */
 | |
| /* >          The off-diagonal elements of the tridiagonal matrix T: */
 | |
| /* >          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] HOUS */
 | |
| /* > \verbatim */
 | |
| /* >          HOUS is COMPLEX array, dimension LHOUS, that */
 | |
| /* >          store the Householder representation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LHOUS */
 | |
| /* > \verbatim */
 | |
| /* >          LHOUS is INTEGER */
 | |
| /* >          The dimension of the array HOUS. LHOUS = MAX(1, dimension) */
 | |
| /* >          If LWORK = -1, or LHOUS=-1, */
 | |
| /* >          then a query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the HOUS array, returns */
 | |
| /* >          this value as the first entry of the HOUS array, and no error */
 | |
| /* >          message related to LHOUS is issued by XERBLA. */
 | |
| /* >          LHOUS = MAX(1, dimension) where */
 | |
| /* >          dimension = 4*N if VECT='N' */
 | |
| /* >          not available now if VECT='H' */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK = MAX(1, dimension) */
 | |
| /* >          If LWORK = -1, or LHOUS=-1, */
 | |
| /* >          then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* >          LWORK = MAX(1, dimension) where */
 | |
| /* >          dimension   = (2KD+1)*N + KD*NTHREADS */
 | |
| /* >          where KD is the blocking size of the reduction, */
 | |
| /* >          FACTOPTNB is the blocking used by the QR or LQ */
 | |
| /* >          algorithm, usually FACTOPTNB=128 is a good choice */
 | |
| /* >          NTHREADS is the number of threads used when */
 | |
| /* >          openMP compilation is enabled, otherwise =1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2017 */
 | |
| 
 | |
| /* > \ingroup complexOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Implemented by Azzam Haidar. */
 | |
| /* > */
 | |
| /* >  All details are available on technical report, SC11, SC13 papers. */
 | |
| /* > */
 | |
| /* >  Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
 | |
| /* >  Parallel reduction to condensed forms for symmetric eigenvalue problems */
 | |
| /* >  using aggregated fine-grained and memory-aware kernels. In Proceedings */
 | |
| /* >  of 2011 International Conference for High Performance Computing, */
 | |
| /* >  Networking, Storage and Analysis (SC '11), New York, NY, USA, */
 | |
| /* >  Article 8 , 11 pages. */
 | |
| /* >  http://doi.acm.org/10.1145/2063384.2063394 */
 | |
| /* > */
 | |
| /* >  A. Haidar, J. Kurzak, P. Luszczek, 2013. */
 | |
| /* >  An improved parallel singular value algorithm and its implementation */
 | |
| /* >  for multicore hardware, In Proceedings of 2013 International Conference */
 | |
| /* >  for High Performance Computing, Networking, Storage and Analysis (SC '13). */
 | |
| /* >  Denver, Colorado, USA, 2013. */
 | |
| /* >  Article 90, 12 pages. */
 | |
| /* >  http://doi.acm.org/10.1145/2503210.2503292 */
 | |
| /* > */
 | |
| /* >  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
 | |
| /* >  A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
 | |
| /* >  calculations based on fine-grained memory aware tasks. */
 | |
| /* >  International Journal of High Performance Computing Applications. */
 | |
| /* >  Volume 28 Issue 2, Pages 196-209, May 2014. */
 | |
| /* >  http://hpc.sagepub.com/content/28/2/196 */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void chetrd_hb2st_(char *stage1, char *vect, char *uplo, 
 | |
| 	integer *n, integer *kd, complex *ab, integer *ldab, real *d__, real *
 | |
| 	e, complex *hous, integer *lhous, complex *work, integer *lwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     real r__1;
 | |
|     complex q__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer inda;
 | |
|     extern integer ilaenv2stage_(integer *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, integer *);
 | |
|     integer thed, indv, myid, indw, apos, dpos, abofdpos, nthreads, i__, k, m,
 | |
| 	     edind, debug;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer lhmin, sicev, sizea, shift, stind, colpt, lwmin, awpos;
 | |
|     logical wantq, upper;
 | |
|     integer grsiz, ttype, stepercol, ed, ib;
 | |
|     extern /* Subroutine */ void chb2st_kernels_(char *, logical *, integer *,
 | |
| 	     integer *, integer *, integer *, integer *, integer *, integer *,
 | |
| 	     complex *, integer *, complex *, complex *, integer *, complex *);
 | |
|     integer st, abdpos;
 | |
|     extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex 
 | |
| 	    *, integer *, complex *, integer *), claset_(char *, 
 | |
| 	    integer *, integer *, complex *, complex *, complex *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     integer thgrid, thgrnb, indtau;
 | |
|     real abstmp;
 | |
|     integer ofdpos, blklastind;
 | |
|     extern /* Subroutine */ void mecago_();
 | |
|     logical lquery, afters1;
 | |
|     integer lda, tid, ldv;
 | |
|     complex tmp;
 | |
|     integer stt, sweepid, nbtiles, sizetau, thgrsiz;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Determine the minimal workspace size required. */
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     --d__;
 | |
|     --e;
 | |
|     --hous;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     debug = 0;
 | |
|     *info = 0;
 | |
|     afters1 = lsame_(stage1, "Y");
 | |
|     wantq = lsame_(vect, "V");
 | |
|     upper = lsame_(uplo, "U");
 | |
|     lquery = *lwork == -1 || *lhous == -1;
 | |
| 
 | |
| /*     Determine the block size, the workspace size and the hous size. */
 | |
| 
 | |
|     ib = ilaenv2stage_(&c__2, "CHETRD_HB2ST", vect, n, kd, &c_n1, &c_n1);
 | |
|     lhmin = ilaenv2stage_(&c__3, "CHETRD_HB2ST", vect, n, kd, &ib, &c_n1);
 | |
|     lwmin = ilaenv2stage_(&c__4, "CHETRD_HB2ST", vect, n, kd, &ib, &c_n1);
 | |
| 
 | |
|     if (! afters1 && ! lsame_(stage1, "N")) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(vect, "N")) {
 | |
| 	*info = -2;
 | |
|     } else if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*kd < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldab < *kd + 1) {
 | |
| 	*info = -7;
 | |
|     } else if (*lhous < lhmin && ! lquery) {
 | |
| 	*info = -11;
 | |
|     } else if (*lwork < lwmin && ! lquery) {
 | |
| 	*info = -13;
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	hous[1].r = (real) lhmin, hous[1].i = 0.f;
 | |
| 	work[1].r = (real) lwmin, work[1].i = 0.f;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CHETRD_HB2ST", &i__1, (ftnlen)12);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	hous[1].r = 1.f, hous[1].i = 0.f;
 | |
| 	work[1].r = 1.f, work[1].i = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine pointer position */
 | |
| 
 | |
|     ldv = *kd + ib;
 | |
|     sizetau = *n << 1;
 | |
|     sicev = *n << 1;
 | |
|     indtau = 1;
 | |
|     indv = indtau + sizetau;
 | |
|     lda = (*kd << 1) + 1;
 | |
|     sizea = lda * *n;
 | |
|     inda = 1;
 | |
|     indw = inda + sizea;
 | |
|     nthreads = 1;
 | |
|     tid = 0;
 | |
| 
 | |
|     if (upper) {
 | |
| 	apos = inda + *kd;
 | |
| 	awpos = inda;
 | |
| 	dpos = apos + *kd;
 | |
| 	ofdpos = dpos - 1;
 | |
| 	abdpos = *kd + 1;
 | |
| 	abofdpos = *kd;
 | |
|     } else {
 | |
| 	apos = inda;
 | |
| 	awpos = inda + *kd + 1;
 | |
| 	dpos = apos;
 | |
| 	ofdpos = dpos + 1;
 | |
| 	abdpos = 1;
 | |
| 	abofdpos = 2;
 | |
|     }
 | |
| 
 | |
| /*     Case KD=0: */
 | |
| /*     The matrix is diagonal. We just copy it (convert to "real" for */
 | |
| /*     complex because D is double and the imaginary part should be 0) */
 | |
| /*     and store it in D. A sequential code here is better or */
 | |
| /*     in a parallel environment it might need two cores for D and E */
 | |
| 
 | |
|     if (*kd == 0) {
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = abdpos + i__ * ab_dim1;
 | |
| 	    d__[i__] = ab[i__2].r;
 | |
| /* L30: */
 | |
| 	}
 | |
| 	i__1 = *n - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    e[i__] = 0.f;
 | |
| /* L40: */
 | |
| 	}
 | |
| 
 | |
| 	hous[1].r = 1.f, hous[1].i = 0.f;
 | |
| 	work[1].r = 1.f, work[1].i = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Case KD=1: */
 | |
| /*     The matrix is already Tridiagonal. We have to make diagonal */
 | |
| /*     and offdiagonal elements real, and store them in D and E. */
 | |
| /*     For that, for real precision just copy the diag and offdiag */
 | |
| /*     to D and E while for the COMPLEX case the bulge chasing is */
 | |
| /*     performed to convert the hermetian tridiagonal to symmetric */
 | |
| /*     tridiagonal. A simpler coversion formula might be used, but then */
 | |
| /*     updating the Q matrix will be required and based if Q is generated */
 | |
| /*     or not this might complicate the story. */
 | |
| 
 | |
|     if (*kd == 1) {
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = abdpos + i__ * ab_dim1;
 | |
| 	    d__[i__] = ab[i__2].r;
 | |
| /* L50: */
 | |
| 	}
 | |
| 
 | |
| /*         make off-diagonal elements real and copy them to E */
 | |
| 
 | |
| 	if (upper) {
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		i__2 = abofdpos + (i__ + 1) * ab_dim1;
 | |
| 		tmp.r = ab[i__2].r, tmp.i = ab[i__2].i;
 | |
| 		abstmp = c_abs(&tmp);
 | |
| 		i__2 = abofdpos + (i__ + 1) * ab_dim1;
 | |
| 		ab[i__2].r = abstmp, ab[i__2].i = 0.f;
 | |
| 		e[i__] = abstmp;
 | |
| 		if (abstmp != 0.f) {
 | |
| 		    q__1.r = tmp.r / abstmp, q__1.i = tmp.i / abstmp;
 | |
| 		    tmp.r = q__1.r, tmp.i = q__1.i;
 | |
| 		} else {
 | |
| 		    tmp.r = 1.f, tmp.i = 0.f;
 | |
| 		}
 | |
| 		if (i__ < *n - 1) {
 | |
| 		    i__2 = abofdpos + (i__ + 2) * ab_dim1;
 | |
| 		    i__3 = abofdpos + (i__ + 2) * ab_dim1;
 | |
| 		    q__1.r = ab[i__3].r * tmp.r - ab[i__3].i * tmp.i, q__1.i =
 | |
| 			     ab[i__3].r * tmp.i + ab[i__3].i * tmp.r;
 | |
| 		    ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
 | |
| 		}
 | |
| /*                  IF( WANTZ ) THEN */
 | |
| /*                     CALL CSCAL( N, CONJG( TMP ), Q( 1, I+1 ), 1 ) */
 | |
| /*                  END IF */
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		i__2 = abofdpos + i__ * ab_dim1;
 | |
| 		tmp.r = ab[i__2].r, tmp.i = ab[i__2].i;
 | |
| 		abstmp = c_abs(&tmp);
 | |
| 		i__2 = abofdpos + i__ * ab_dim1;
 | |
| 		ab[i__2].r = abstmp, ab[i__2].i = 0.f;
 | |
| 		e[i__] = abstmp;
 | |
| 		if (abstmp != 0.f) {
 | |
| 		    q__1.r = tmp.r / abstmp, q__1.i = tmp.i / abstmp;
 | |
| 		    tmp.r = q__1.r, tmp.i = q__1.i;
 | |
| 		} else {
 | |
| 		    tmp.r = 1.f, tmp.i = 0.f;
 | |
| 		}
 | |
| 		if (i__ < *n - 1) {
 | |
| 		    i__2 = abofdpos + (i__ + 1) * ab_dim1;
 | |
| 		    i__3 = abofdpos + (i__ + 1) * ab_dim1;
 | |
| 		    q__1.r = ab[i__3].r * tmp.r - ab[i__3].i * tmp.i, q__1.i =
 | |
| 			     ab[i__3].r * tmp.i + ab[i__3].i * tmp.r;
 | |
| 		    ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
 | |
| 		}
 | |
| /*                 IF( WANTQ ) THEN */
 | |
| /*                    CALL CSCAL( N, TMP, Q( 1, I+1 ), 1 ) */
 | |
| /*                 END IF */
 | |
| /* L70: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	hous[1].r = 1.f, hous[1].i = 0.f;
 | |
| 	work[1].r = 1.f, work[1].i = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Main code start here. */
 | |
| /*     Reduce the hermitian band of A to a tridiagonal matrix. */
 | |
| 
 | |
|     thgrsiz = *n;
 | |
|     grsiz = 1;
 | |
|     shift = 3;
 | |
|     r__1 = (real) (*n) / (real) (*kd) + .5f;
 | |
|     nbtiles = r_int(&r__1);
 | |
|     r__1 = (real) shift / (real) grsiz + .5f;
 | |
|     stepercol = r_int(&r__1);
 | |
|     r__1 = (real) (*n - 1) / (real) thgrsiz + .5f;
 | |
|     thgrnb = r_int(&r__1);
 | |
| 
 | |
|     i__1 = *kd + 1;
 | |
|     clacpy_("A", &i__1, n, &ab[ab_offset], ldab, &work[apos], &lda)
 | |
| 	    ;
 | |
|     claset_("A", kd, n, &c_b1, &c_b1, &work[awpos], &lda);
 | |
| 
 | |
| 
 | |
| /*     openMP parallelisation start here */
 | |
| 
 | |
| 
 | |
| /*     main bulge chasing loop */
 | |
| 
 | |
|     i__1 = thgrnb;
 | |
|     for (thgrid = 1; thgrid <= i__1; ++thgrid) {
 | |
| 	stt = (thgrid - 1) * thgrsiz + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = stt + thgrsiz - 1, i__3 = *n - 1;
 | |
| 	thed = f2cmin(i__2,i__3);
 | |
| 	i__2 = *n - 1;
 | |
| 	for (i__ = stt; i__ <= i__2; ++i__) {
 | |
| 	    ed = f2cmin(i__,thed);
 | |
| 	    if (stt > ed) {
 | |
| 		myexit_();
 | |
| 	    }
 | |
| 	    i__3 = stepercol;
 | |
| 	    for (m = 1; m <= i__3; ++m) {
 | |
| 		st = stt;
 | |
| 		i__4 = ed;
 | |
| 		for (sweepid = st; sweepid <= i__4; ++sweepid) {
 | |
| 		    i__5 = grsiz;
 | |
| 		    for (k = 1; k <= i__5; ++k) {
 | |
| 			myid = (i__ - sweepid) * (stepercol * grsiz) + (m - 1)
 | |
| 				 * grsiz + k;
 | |
| 			if (myid == 1) {
 | |
| 			    ttype = 1;
 | |
| 			} else {
 | |
| 			    ttype = myid % 2 + 2;
 | |
| 			}
 | |
| 			if (ttype == 2) {
 | |
| 			    colpt = myid / 2 * *kd + sweepid;
 | |
| 			    stind = colpt - *kd + 1;
 | |
| 			    edind = f2cmin(colpt,*n);
 | |
| 			    blklastind = colpt;
 | |
| 			} else {
 | |
| 			    colpt = (myid + 1) / 2 * *kd + sweepid;
 | |
| 			    stind = colpt - *kd + 1;
 | |
| 			    edind = f2cmin(colpt,*n);
 | |
| 			    if (stind >= edind - 1 && edind == *n) {
 | |
| 				blklastind = *n;
 | |
| 			    } else {
 | |
| 				blklastind = 0;
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| /*                         Call the kernel */
 | |
| 
 | |
| 			chb2st_kernels_(uplo, &wantq, &ttype, &stind, &edind,
 | |
| 				 &sweepid, n, kd, &ib, &work[inda], &lda, &
 | |
| 				hous[indv], &hous[indtau], &ldv, &work[indw + 
 | |
| 				tid * *kd]);
 | |
| 			if (blklastind >= *n - 1) {
 | |
| 			    ++stt;
 | |
| 			    myexit_();
 | |
| 			}
 | |
| /* L140: */
 | |
| 		    }
 | |
| /* L130: */
 | |
| 		}
 | |
| /* L120: */
 | |
| 	    }
 | |
| /* L110: */
 | |
| 	}
 | |
| /* L100: */
 | |
|     }
 | |
| 
 | |
| 
 | |
| /*     Copy the diagonal from A to D. Note that D is REAL thus only */
 | |
| /*     the Real part is needed, the imaginary part should be zero. */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	i__2 = dpos + (i__ - 1) * lda;
 | |
| 	d__[i__] = work[i__2].r;
 | |
| /* L150: */
 | |
|     }
 | |
| 
 | |
| /*     Copy the off diagonal from A to E. Note that E is REAL thus only */
 | |
| /*     the Real part is needed, the imaginary part should be zero. */
 | |
| 
 | |
|     if (upper) {
 | |
| 	i__1 = *n - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = ofdpos + i__ * lda;
 | |
| 	    e[i__] = work[i__2].r;
 | |
| /* L160: */
 | |
| 	}
 | |
|     } else {
 | |
| 	i__1 = *n - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = ofdpos + (i__ - 1) * lda;
 | |
| 	    e[i__] = work[i__2].r;
 | |
| /* L170: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     hous[1].r = (real) lhmin, hous[1].i = 0.f;
 | |
|     work[1].r = (real) lwmin, work[1].i = 0.f;
 | |
|     return;
 | |
| 
 | |
| /*     End of CHETRD_HB2ST */
 | |
| 
 | |
| } /* chetrd_hb2st__ */
 | |
| 
 |