955 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			955 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief <b> CGTSVX computes the solution to system of linear equations A * X = B for GT matrices </b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGTSVX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtsvx.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtsvx.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtsvx.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, */
 | |
| /*                          DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, */
 | |
| /*                          WORK, RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          FACT, TRANS */
 | |
| /*       INTEGER            INFO, LDB, LDX, N, NRHS */
 | |
| /*       REAL               RCOND */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       REAL               BERR( * ), FERR( * ), RWORK( * ) */
 | |
| /*       COMPLEX            B( LDB, * ), D( * ), DF( * ), DL( * ), */
 | |
| /*      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ), */
 | |
| /*      $                   WORK( * ), X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CGTSVX uses the LU factorization to compute the solution to a complex */
 | |
| /* > system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
 | |
| /* > where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */
 | |
| /* > matrices. */
 | |
| /* > */
 | |
| /* > Error bounds on the solution and a condition estimate are also */
 | |
| /* > provided. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Description: */
 | |
| /*  ================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > The following steps are performed: */
 | |
| /* > */
 | |
| /* > 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */
 | |
| /* >    as A = L * U, where L is a product of permutation and unit lower */
 | |
| /* >    bidiagonal matrices and U is upper triangular with nonzeros in */
 | |
| /* >    only the main diagonal and first two superdiagonals. */
 | |
| /* > */
 | |
| /* > 2. If some U(i,i)=0, so that U is exactly singular, then the routine */
 | |
| /* >    returns with INFO = i. Otherwise, the factored form of A is used */
 | |
| /* >    to estimate the condition number of the matrix A.  If the */
 | |
| /* >    reciprocal of the condition number is less than machine precision, */
 | |
| /* >    INFO = N+1 is returned as a warning, but the routine still goes on */
 | |
| /* >    to solve for X and compute error bounds as described below. */
 | |
| /* > */
 | |
| /* > 3. The system of equations is solved for X using the factored form */
 | |
| /* >    of A. */
 | |
| /* > */
 | |
| /* > 4. Iterative refinement is applied to improve the computed solution */
 | |
| /* >    matrix and calculate error bounds and backward error estimates */
 | |
| /* >    for it. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] FACT */
 | |
| /* > \verbatim */
 | |
| /* >          FACT is CHARACTER*1 */
 | |
| /* >          Specifies whether or not the factored form of A has been */
 | |
| /* >          supplied on entry. */
 | |
| /* >          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored form */
 | |
| /* >                  of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not */
 | |
| /* >                  be modified. */
 | |
| /* >          = 'N':  The matrix will be copied to DLF, DF, and DUF */
 | |
| /* >                  and factored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          Specifies the form of the system of equations: */
 | |
| /* >          = 'N':  A * X = B     (No transpose) */
 | |
| /* >          = 'T':  A**T * X = B  (Transpose) */
 | |
| /* >          = 'C':  A**H * X = B  (Conjugate transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of right hand sides, i.e., the number of columns */
 | |
| /* >          of the matrix B.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DL */
 | |
| /* > \verbatim */
 | |
| /* >          DL is COMPLEX array, dimension (N-1) */
 | |
| /* >          The (n-1) subdiagonal elements of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is COMPLEX array, dimension (N) */
 | |
| /* >          The n diagonal elements of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DU */
 | |
| /* > \verbatim */
 | |
| /* >          DU is COMPLEX array, dimension (N-1) */
 | |
| /* >          The (n-1) superdiagonal elements of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DLF */
 | |
| /* > \verbatim */
 | |
| /* >          DLF is COMPLEX array, dimension (N-1) */
 | |
| /* >          If FACT = 'F', then DLF is an input argument and on entry */
 | |
| /* >          contains the (n-1) multipliers that define the matrix L from */
 | |
| /* >          the LU factorization of A as computed by CGTTRF. */
 | |
| /* > */
 | |
| /* >          If FACT = 'N', then DLF is an output argument and on exit */
 | |
| /* >          contains the (n-1) multipliers that define the matrix L from */
 | |
| /* >          the LU factorization of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DF */
 | |
| /* > \verbatim */
 | |
| /* >          DF is COMPLEX array, dimension (N) */
 | |
| /* >          If FACT = 'F', then DF is an input argument and on entry */
 | |
| /* >          contains the n diagonal elements of the upper triangular */
 | |
| /* >          matrix U from the LU factorization of A. */
 | |
| /* > */
 | |
| /* >          If FACT = 'N', then DF is an output argument and on exit */
 | |
| /* >          contains the n diagonal elements of the upper triangular */
 | |
| /* >          matrix U from the LU factorization of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DUF */
 | |
| /* > \verbatim */
 | |
| /* >          DUF is COMPLEX array, dimension (N-1) */
 | |
| /* >          If FACT = 'F', then DUF is an input argument and on entry */
 | |
| /* >          contains the (n-1) elements of the first superdiagonal of U. */
 | |
| /* > */
 | |
| /* >          If FACT = 'N', then DUF is an output argument and on exit */
 | |
| /* >          contains the (n-1) elements of the first superdiagonal of U. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DU2 */
 | |
| /* > \verbatim */
 | |
| /* >          DU2 is COMPLEX array, dimension (N-2) */
 | |
| /* >          If FACT = 'F', then DU2 is an input argument and on entry */
 | |
| /* >          contains the (n-2) elements of the second superdiagonal of */
 | |
| /* >          U. */
 | |
| /* > */
 | |
| /* >          If FACT = 'N', then DU2 is an output argument and on exit */
 | |
| /* >          contains the (n-2) elements of the second superdiagonal of */
 | |
| /* >          U. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          If FACT = 'F', then IPIV is an input argument and on entry */
 | |
| /* >          contains the pivot indices from the LU factorization of A as */
 | |
| /* >          computed by CGTTRF. */
 | |
| /* > */
 | |
| /* >          If FACT = 'N', then IPIV is an output argument and on exit */
 | |
| /* >          contains the pivot indices from the LU factorization of A; */
 | |
| /* >          row i of the matrix was interchanged with row IPIV(i). */
 | |
| /* >          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */
 | |
| /* >          a row interchange was not required. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX array, dimension (LDB,NRHS) */
 | |
| /* >          The N-by-NRHS right hand side matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX array, dimension (LDX,NRHS) */
 | |
| /* >          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is REAL */
 | |
| /* >          The estimate of the reciprocal condition number of the matrix */
 | |
| /* >          A.  If RCOND is less than the machine precision (in */
 | |
| /* >          particular, if RCOND = 0), the matrix is singular to working */
 | |
| /* >          precision.  This condition is indicated by a return code of */
 | |
| /* >          INFO > 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] FERR */
 | |
| /* > \verbatim */
 | |
| /* >          FERR is REAL array, dimension (NRHS) */
 | |
| /* >          The estimated forward error bound for each solution vector */
 | |
| /* >          X(j) (the j-th column of the solution matrix X). */
 | |
| /* >          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 | |
| /* >          is an estimated upper bound for the magnitude of the largest */
 | |
| /* >          element in (X(j) - XTRUE) divided by the magnitude of the */
 | |
| /* >          largest element in X(j).  The estimate is as reliable as */
 | |
| /* >          the estimate for RCOND, and is almost always a slight */
 | |
| /* >          overestimate of the true error. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BERR */
 | |
| /* > \verbatim */
 | |
| /* >          BERR is REAL array, dimension (NRHS) */
 | |
| /* >          The componentwise relative backward error of each solution */
 | |
| /* >          vector X(j) (i.e., the smallest relative change in */
 | |
| /* >          any element of A or B that makes X(j) an exact solution). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  if INFO = i, and i is */
 | |
| /* >                <= N:  U(i,i) is exactly zero.  The factorization */
 | |
| /* >                       has not been completed unless i = N, but the */
 | |
| /* >                       factor U is exactly singular, so the solution */
 | |
| /* >                       and error bounds could not be computed. */
 | |
| /* >                       RCOND = 0 is returned. */
 | |
| /* >                = N+1: U is nonsingular, but RCOND is less than machine */
 | |
| /* >                       precision, meaning that the matrix is singular */
 | |
| /* >                       to working precision.  Nevertheless, the */
 | |
| /* >                       solution and error bounds are computed because */
 | |
| /* >                       there are a number of situations where the */
 | |
| /* >                       computed solution can be more accurate than the */
 | |
| /* >                       value of RCOND would suggest. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complexGTsolve */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgtsvx_(char *fact, char *trans, integer *n, integer *
 | |
| 	nrhs, complex *dl, complex *d__, complex *du, complex *dlf, complex *
 | |
| 	df, complex *duf, complex *du2, integer *ipiv, complex *b, integer *
 | |
| 	ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, 
 | |
| 	complex *work, real *rwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer b_dim1, b_offset, x_dim1, x_offset, i__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     char norm[1];
 | |
|     extern logical lsame_(char *, char *);
 | |
|     real anorm;
 | |
|     extern /* Subroutine */ void ccopy_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *);
 | |
|     extern real slamch_(char *), clangt_(char *, integer *, complex *,
 | |
| 	     complex *, complex *);
 | |
|     logical nofact;
 | |
|     extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex 
 | |
| 	    *, integer *, complex *, integer *), cgtcon_(char *, 
 | |
| 	    integer *, complex *, complex *, complex *, complex *, integer *, 
 | |
| 	    real *, real *, complex *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void cgtrfs_(char *, integer *, integer *, complex 
 | |
| 	    *, complex *, complex *, complex *, complex *, complex *, complex 
 | |
| 	    *, integer *, complex *, integer *, complex *, integer *, real *, 
 | |
| 	    real *, complex *, real *, integer *), cgttrf_(integer *, 
 | |
| 	    complex *, complex *, complex *, complex *, integer *, integer *);
 | |
|     logical notran;
 | |
|     extern /* Subroutine */ void cgttrs_(char *, integer *, integer *, complex 
 | |
| 	    *, complex *, complex *, complex *, integer *, complex *, integer 
 | |
| 	    *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --dl;
 | |
|     --d__;
 | |
|     --du;
 | |
|     --dlf;
 | |
|     --df;
 | |
|     --duf;
 | |
|     --du2;
 | |
|     --ipiv;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --ferr;
 | |
|     --berr;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     nofact = lsame_(fact, "N");
 | |
|     notran = lsame_(trans, "N");
 | |
|     if (! nofact && ! lsame_(fact, "F")) {
 | |
| 	*info = -1;
 | |
|     } else if (! notran && ! lsame_(trans, "T") && ! 
 | |
| 	    lsame_(trans, "C")) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -14;
 | |
|     } else if (*ldx < f2cmax(1,*n)) {
 | |
| 	*info = -16;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CGTSVX", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (nofact) {
 | |
| 
 | |
| /*        Compute the LU factorization of A. */
 | |
| 
 | |
| 	ccopy_(n, &d__[1], &c__1, &df[1], &c__1);
 | |
| 	if (*n > 1) {
 | |
| 	    i__1 = *n - 1;
 | |
| 	    ccopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
 | |
| 	    i__1 = *n - 1;
 | |
| 	    ccopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
 | |
| 	}
 | |
| 	cgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);
 | |
| 
 | |
| /*        Return if INFO is non-zero. */
 | |
| 
 | |
| 	if (*info > 0) {
 | |
| 	    *rcond = 0.f;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the norm of the matrix A. */
 | |
| 
 | |
|     if (notran) {
 | |
| 	*(unsigned char *)norm = '1';
 | |
|     } else {
 | |
| 	*(unsigned char *)norm = 'I';
 | |
|     }
 | |
|     anorm = clangt_(norm, n, &dl[1], &d__[1], &du[1]);
 | |
| 
 | |
| /*     Compute the reciprocal of the condition number of A. */
 | |
| 
 | |
|     cgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm, 
 | |
| 	    rcond, &work[1], info);
 | |
| 
 | |
| /*     Compute the solution vectors X. */
 | |
| 
 | |
|     clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 | |
|     cgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
 | |
| 	    x_offset], ldx, info);
 | |
| 
 | |
| /*     Use iterative refinement to improve the computed solutions and */
 | |
| /*     compute error bounds and backward error estimates for them. */
 | |
| 
 | |
|     cgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
 | |
| 	     &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
 | |
| 	    , &berr[1], &work[1], &rwork[1], info);
 | |
| 
 | |
| /*     Set INFO = N+1 if the matrix is singular to working precision. */
 | |
| 
 | |
|     if (*rcond < slamch_("Epsilon")) {
 | |
| 	*info = *n + 1;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CGTSVX */
 | |
| 
 | |
| } /* cgtsvx_ */
 | |
| 
 |