251 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGTCON
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGTCON + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtcon.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtcon.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtcon.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
 | |
| *                          WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            INFO, N
 | |
| *       REAL               ANORM, RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGTCON estimates the reciprocal of the condition number of a complex
 | |
| *> tridiagonal matrix A using the LU factorization as computed by
 | |
| *> CGTTRF.
 | |
| *>
 | |
| *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | |
| *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies whether the 1-norm condition number or the
 | |
| *>          infinity-norm condition number is required:
 | |
| *>          = '1' or 'O':  1-norm;
 | |
| *>          = 'I':         Infinity-norm.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DL
 | |
| *> \verbatim
 | |
| *>          DL is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) multipliers that define the matrix L from the
 | |
| *>          LU factorization of A as computed by CGTTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension (N)
 | |
| *>          The n diagonal elements of the upper triangular matrix U from
 | |
| *>          the LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU
 | |
| *> \verbatim
 | |
| *>          DU is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) elements of the first superdiagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU2
 | |
| *> \verbatim
 | |
| *>          DU2 is COMPLEX array, dimension (N-2)
 | |
| *>          The (n-2) elements of the second superdiagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | |
| *>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | |
| *>          required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ANORM
 | |
| *> \verbatim
 | |
| *>          ANORM is REAL
 | |
| *>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 | |
| *>          If NORM = 'I', the infinity-norm of the original matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          The reciprocal of the condition number of the matrix A,
 | |
| *>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 | |
| *>          estimate of the 1-norm of inv(A) computed in this routine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexGTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
 | |
|      $                   WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            INFO, N
 | |
|       REAL               ANORM, RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ONENRM
 | |
|       INTEGER            I, KASE, KASE1
 | |
|       REAL               AINVNM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGTTRS, CLACN2, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | |
|       IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ANORM.LT.ZERO ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGTCON', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       RCOND = ZERO
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RETURN
 | |
|       ELSE IF( ANORM.EQ.ZERO ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Check that D(1:N) is non-zero.
 | |
| *
 | |
|       DO 10 I = 1, N
 | |
|          IF( D( I ).EQ.CMPLX( ZERO ) )
 | |
|      $      RETURN
 | |
|    10 CONTINUE
 | |
| *
 | |
|       AINVNM = ZERO
 | |
|       IF( ONENRM ) THEN
 | |
|          KASE1 = 1
 | |
|       ELSE
 | |
|          KASE1 = 2
 | |
|       END IF
 | |
|       KASE = 0
 | |
|    20 CONTINUE
 | |
|       CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
|          IF( KASE.EQ.KASE1 ) THEN
 | |
| *
 | |
| *           Multiply by inv(U)*inv(L).
 | |
| *
 | |
|             CALL CGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
 | |
|      $                   WORK, N, INFO )
 | |
|          ELSE
 | |
| *
 | |
| *           Multiply by inv(L**H)*inv(U**H).
 | |
| *
 | |
|             CALL CGTTRS( 'Conjugate transpose', N, 1, DL, D, DU, DU2,
 | |
|      $                   IPIV, WORK, N, INFO )
 | |
|          END IF
 | |
|          GO TO 20
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM.NE.ZERO )
 | |
|      $   RCOND = ( ONE / AINVNM ) / ANORM
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGTCON
 | |
| *
 | |
|       END
 |