1769 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1769 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {1.f,0.f};
 | |
| static complex c_b2 = {0.f,0.f};
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__2 = 2;
 | |
| static integer c__3 = 3;
 | |
| static integer c__16 = 16;
 | |
| 
 | |
| /* > \brief \b CGGHD3 */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGGHD3 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgghd3.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgghd3.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgghd3.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*        SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, */
 | |
| /*       $                   LDQ, Z, LDZ, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*        CHARACTER          COMPQ, COMPZ */
 | |
| /*        INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK */
 | |
| /*        COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
 | |
| /*       $                   Z( LDZ, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > */
 | |
| /* > CGGHD3 reduces a pair of complex matrices (A,B) to generalized upper */
 | |
| /* > Hessenberg form using unitary transformations, where A is a */
 | |
| /* > general matrix and B is upper triangular.  The form of the */
 | |
| /* > generalized eigenvalue problem is */
 | |
| /* >    A*x = lambda*B*x, */
 | |
| /* > and B is typically made upper triangular by computing its QR */
 | |
| /* > factorization and moving the unitary matrix Q to the left side */
 | |
| /* > of the equation. */
 | |
| /* > */
 | |
| /* > This subroutine simultaneously reduces A to a Hessenberg matrix H: */
 | |
| /* >    Q**H*A*Z = H */
 | |
| /* > and transforms B to another upper triangular matrix T: */
 | |
| /* >    Q**H*B*Z = T */
 | |
| /* > in order to reduce the problem to its standard form */
 | |
| /* >    H*y = lambda*T*y */
 | |
| /* > where y = Z**H*x. */
 | |
| /* > */
 | |
| /* > The unitary matrices Q and Z are determined as products of Givens */
 | |
| /* > rotations.  They may either be formed explicitly, or they may be */
 | |
| /* > postmultiplied into input matrices Q1 and Z1, so that */
 | |
| /* > */
 | |
| /* >      Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H */
 | |
| /* > */
 | |
| /* >      Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H */
 | |
| /* > */
 | |
| /* > If Q1 is the unitary matrix from the QR factorization of B in the */
 | |
| /* > original equation A*x = lambda*B*x, then CGGHD3 reduces the original */
 | |
| /* > problem to generalized Hessenberg form. */
 | |
| /* > */
 | |
| /* > This is a blocked variant of CGGHRD, using matrix-matrix */
 | |
| /* > multiplications for parts of the computation to enhance performance. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] COMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPQ is CHARACTER*1 */
 | |
| /* >          = 'N': do not compute Q; */
 | |
| /* >          = 'I': Q is initialized to the unit matrix, and the */
 | |
| /* >                 unitary matrix Q is returned; */
 | |
| /* >          = 'V': Q must contain a unitary matrix Q1 on entry, */
 | |
| /* >                 and the product Q1*Q is returned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COMPZ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPZ is CHARACTER*1 */
 | |
| /* >          = 'N': do not compute Z; */
 | |
| /* >          = 'I': Z is initialized to the unit matrix, and the */
 | |
| /* >                 unitary matrix Z is returned; */
 | |
| /* >          = 'V': Z must contain a unitary matrix Z1 on entry, */
 | |
| /* >                 and the product Z1*Z is returned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A and B.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* > */
 | |
| /* >          ILO and IHI mark the rows and columns of A which are to be */
 | |
| /* >          reduced.  It is assumed that A is already upper triangular */
 | |
| /* >          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are */
 | |
| /* >          normally set by a previous call to CGGBAL; otherwise they */
 | |
| /* >          should be set to 1 and N respectively. */
 | |
| /* >          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA, N) */
 | |
| /* >          On entry, the N-by-N general matrix to be reduced. */
 | |
| /* >          On exit, the upper triangle and the first subdiagonal of A */
 | |
| /* >          are overwritten with the upper Hessenberg matrix H, and the */
 | |
| /* >          rest is set to zero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX array, dimension (LDB, N) */
 | |
| /* >          On entry, the N-by-N upper triangular matrix B. */
 | |
| /* >          On exit, the upper triangular matrix T = Q**H B Z.  The */
 | |
| /* >          elements below the diagonal are set to zero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is COMPLEX array, dimension (LDQ, N) */
 | |
| /* >          On entry, if COMPQ = 'V', the unitary matrix Q1, typically */
 | |
| /* >          from the QR factorization of B. */
 | |
| /* >          On exit, if COMPQ='I', the unitary matrix Q, and if */
 | |
| /* >          COMPQ = 'V', the product Q1*Q. */
 | |
| /* >          Not referenced if COMPQ='N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. */
 | |
| /* >          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX array, dimension (LDZ, N) */
 | |
| /* >          On entry, if COMPZ = 'V', the unitary matrix Z1. */
 | |
| /* >          On exit, if COMPZ='I', the unitary matrix Z, and if */
 | |
| /* >          COMPZ = 'V', the product Z1*Z. */
 | |
| /* >          Not referenced if COMPZ='N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z. */
 | |
| /* >          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (LWORK) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in]  LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The length of the array WORK.  LWORK >= 1. */
 | |
| /* >          For optimum performance LWORK >= 6*N*NB, where NB is the */
 | |
| /* >          optimal blocksize. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date January 2015 */
 | |
| 
 | |
| /* > \ingroup complexOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  This routine reduces A to Hessenberg form and maintains B in */
 | |
| /* >  using a blocked variant of Moler and Stewart's original algorithm, */
 | |
| /* >  as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti */
 | |
| /* >  (BIT 2008). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgghd3_(char *compq, char *compz, integer *n, integer *
 | |
| 	ilo, integer *ihi, complex *a, integer *lda, complex *b, integer *ldb,
 | |
| 	 complex *q, integer *ldq, complex *z__, integer *ldz, complex *work, 
 | |
| 	integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
 | |
| 	    z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9;
 | |
|     complex q__1, q__2, q__3, q__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical blk22;
 | |
|     integer cola, jcol, ierr;
 | |
|     complex temp;
 | |
|     extern /* Subroutine */ void crot_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *, real *, complex *);
 | |
|     integer jrow, topq, ppwo;
 | |
|     complex temp1, temp2, temp3;
 | |
|     real c__;
 | |
|     integer kacc22, i__, j, k;
 | |
|     complex s;
 | |
|     extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, complex *, complex *, integer *, complex *, integer *, 
 | |
| 	    complex *, complex *, integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
 | |
| 	    , complex *, integer *, complex *, integer *, complex *, complex *
 | |
| 	    , integer *);
 | |
|     integer nbmin;
 | |
|     extern /* Subroutine */ void cunm22_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, complex *, integer *, complex *, integer *, 
 | |
| 	    complex *, integer *, integer *);
 | |
|     complex ctemp;
 | |
|     integer nblst;
 | |
|     logical initq;
 | |
|     complex c1, c2;
 | |
|     logical wantq;
 | |
|     integer j0;
 | |
|     extern /* Subroutine */ void ctrmv_(char *, char *, char *, integer *, 
 | |
| 	    complex *, integer *, complex *, integer *);
 | |
|     logical initz, wantz;
 | |
|     complex s1, s2;
 | |
|     char compq2[1], compz2[1];
 | |
|     integer nb, jj, nh;
 | |
|     extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, complex *, integer *, complex *, integer *, complex *, 
 | |
| 	    integer *, complex *, integer *, integer *);
 | |
|     integer nx, pw;
 | |
|     extern /* Subroutine */ void claset_(char *, integer *, integer *, complex 
 | |
| 	    *, complex *, complex *, integer *), clartg_(complex *, 
 | |
| 	    complex *, real *, complex *, complex *), clacpy_(char *, integer 
 | |
| 	    *, integer *, complex *, integer *, complex *, integer *);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer lwkopt;
 | |
|     logical lquery;
 | |
|     integer nnb, len, top, ppw, n2nb;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     January 2015 */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     nb = ilaenv_(&c__1, "CGGHD3", " ", n, ilo, ihi, &c_n1, (ftnlen)6, (ftnlen)
 | |
| 	    1);
 | |
| /* Computing MAX */
 | |
|     i__1 = *n * 6 * nb;
 | |
|     lwkopt = f2cmax(i__1,1);
 | |
|     q__1.r = (real) lwkopt, q__1.i = 0.f;
 | |
|     work[1].r = q__1.r, work[1].i = q__1.i;
 | |
|     initq = lsame_(compq, "I");
 | |
|     wantq = initq || lsame_(compq, "V");
 | |
|     initz = lsame_(compz, "I");
 | |
|     wantz = initz || lsame_(compz, "V");
 | |
|     lquery = *lwork == -1;
 | |
| 
 | |
|     if (! lsame_(compq, "N") && ! wantq) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(compz, "N") && ! wantz) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ilo < 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*ihi > *n || *ihi < *ilo - 1) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (wantq && *ldq < *n || *ldq < 1) {
 | |
| 	*info = -11;
 | |
|     } else if (wantz && *ldz < *n || *ldz < 1) {
 | |
| 	*info = -13;
 | |
|     } else if (*lwork < 1 && ! lquery) {
 | |
| 	*info = -15;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CGGHD3", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize Q and Z if desired. */
 | |
| 
 | |
|     if (initq) {
 | |
| 	claset_("All", n, n, &c_b2, &c_b1, &q[q_offset], ldq);
 | |
|     }
 | |
|     if (initz) {
 | |
| 	claset_("All", n, n, &c_b2, &c_b1, &z__[z_offset], ldz);
 | |
|     }
 | |
| 
 | |
| /*     Zero out lower triangle of B. */
 | |
| 
 | |
|     if (*n > 1) {
 | |
| 	i__1 = *n - 1;
 | |
| 	i__2 = *n - 1;
 | |
| 	claset_("Lower", &i__1, &i__2, &c_b2, &c_b2, &b[b_dim1 + 2], ldb);
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     nh = *ihi - *ilo + 1;
 | |
|     if (nh <= 1) {
 | |
| 	work[1].r = 1.f, work[1].i = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine the blocksize. */
 | |
| 
 | |
|     nbmin = ilaenv_(&c__2, "CGGHD3", " ", n, ilo, ihi, &c_n1, (ftnlen)6, (
 | |
| 	    ftnlen)1);
 | |
|     if (nb > 1 && nb < nh) {
 | |
| 
 | |
| /*        Determine when to use unblocked instead of blocked code. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	i__1 = nb, i__2 = ilaenv_(&c__3, "CGGHD3", " ", n, ilo, ihi, &c_n1, (
 | |
| 		ftnlen)6, (ftnlen)1);
 | |
| 	nx = f2cmax(i__1,i__2);
 | |
| 	if (nx < nh) {
 | |
| 
 | |
| /*           Determine if workspace is large enough for blocked code. */
 | |
| 
 | |
| 	    if (*lwork < lwkopt) {
 | |
| 
 | |
| /*              Not enough workspace to use optimal NB:  determine the */
 | |
| /*              minimum value of NB, and reduce NB or force use of */
 | |
| /*              unblocked code. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		i__1 = 2, i__2 = ilaenv_(&c__2, "CGGHD3", " ", n, ilo, ihi, &
 | |
| 			c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 		nbmin = f2cmax(i__1,i__2);
 | |
| 		if (*lwork >= *n * 6 * nbmin) {
 | |
| 		    nb = *lwork / (*n * 6);
 | |
| 		} else {
 | |
| 		    nb = 1;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (nb < nbmin || nb >= nh) {
 | |
| 
 | |
| /*        Use unblocked code below */
 | |
| 
 | |
| 	jcol = *ilo;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Use blocked code */
 | |
| 
 | |
| 	kacc22 = ilaenv_(&c__16, "CGGHD3", " ", n, ilo, ihi, &c_n1, (ftnlen)6,
 | |
| 		 (ftnlen)1);
 | |
| 	blk22 = kacc22 == 2;
 | |
| 	i__1 = *ihi - 2;
 | |
| 	i__2 = nb;
 | |
| 	for (jcol = *ilo; i__2 < 0 ? jcol >= i__1 : jcol <= i__1; jcol += 
 | |
| 		i__2) {
 | |
| /* Computing MIN */
 | |
| 	    i__3 = nb, i__4 = *ihi - jcol - 1;
 | |
| 	    nnb = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*           Initialize small unitary factors that will hold the */
 | |
| /*           accumulated Givens rotations in workspace. */
 | |
| /*           N2NB   denotes the number of 2*NNB-by-2*NNB factors */
 | |
| /*           NBLST  denotes the (possibly smaller) order of the last */
 | |
| /*                  factor. */
 | |
| 
 | |
| 	    n2nb = (*ihi - jcol - 1) / nnb - 1;
 | |
| 	    nblst = *ihi - jcol - n2nb * nnb;
 | |
| 	    claset_("All", &nblst, &nblst, &c_b2, &c_b1, &work[1], &nblst);
 | |
| 	    pw = nblst * nblst + 1;
 | |
| 	    i__3 = n2nb;
 | |
| 	    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		i__4 = nnb << 1;
 | |
| 		i__5 = nnb << 1;
 | |
| 		i__6 = nnb << 1;
 | |
| 		claset_("All", &i__4, &i__5, &c_b2, &c_b1, &work[pw], &i__6);
 | |
| 		pw += (nnb << 2) * nnb;
 | |
| 	    }
 | |
| 
 | |
| /*           Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form. */
 | |
| 
 | |
| 	    i__3 = jcol + nnb - 1;
 | |
| 	    for (j = jcol; j <= i__3; ++j) {
 | |
| 
 | |
| /*              Reduce Jth column of A. Store cosines and sines in Jth */
 | |
| /*              column of A and B, respectively. */
 | |
| 
 | |
| 		i__4 = j + 2;
 | |
| 		for (i__ = *ihi; i__ >= i__4; --i__) {
 | |
| 		    i__5 = i__ - 1 + j * a_dim1;
 | |
| 		    temp.r = a[i__5].r, temp.i = a[i__5].i;
 | |
| 		    clartg_(&temp, &a[i__ + j * a_dim1], &c__, &s, &a[i__ - 1 
 | |
| 			    + j * a_dim1]);
 | |
| 		    i__5 = i__ + j * a_dim1;
 | |
| 		    q__1.r = c__, q__1.i = 0.f;
 | |
| 		    a[i__5].r = q__1.r, a[i__5].i = q__1.i;
 | |
| 		    i__5 = i__ + j * b_dim1;
 | |
| 		    b[i__5].r = s.r, b[i__5].i = s.i;
 | |
| 		}
 | |
| 
 | |
| /*              Accumulate Givens rotations into workspace array. */
 | |
| 
 | |
| 		ppw = (nblst + 1) * (nblst - 2) - j + jcol + 1;
 | |
| 		len = j + 2 - jcol;
 | |
| 		jrow = j + n2nb * nnb + 2;
 | |
| 		i__4 = jrow;
 | |
| 		for (i__ = *ihi; i__ >= i__4; --i__) {
 | |
| 		    i__5 = i__ + j * a_dim1;
 | |
| 		    ctemp.r = a[i__5].r, ctemp.i = a[i__5].i;
 | |
| 		    i__5 = i__ + j * b_dim1;
 | |
| 		    s.r = b[i__5].r, s.i = b[i__5].i;
 | |
| 		    i__5 = ppw + len - 1;
 | |
| 		    for (jj = ppw; jj <= i__5; ++jj) {
 | |
| 			i__6 = jj + nblst;
 | |
| 			temp.r = work[i__6].r, temp.i = work[i__6].i;
 | |
| 			i__6 = jj + nblst;
 | |
| 			q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, q__2.i =
 | |
| 				 ctemp.r * temp.i + ctemp.i * temp.r;
 | |
| 			i__7 = jj;
 | |
| 			q__3.r = s.r * work[i__7].r - s.i * work[i__7].i, 
 | |
| 				q__3.i = s.r * work[i__7].i + s.i * work[i__7]
 | |
| 				.r;
 | |
| 			q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
 | |
| 			work[i__6].r = q__1.r, work[i__6].i = q__1.i;
 | |
| 			i__6 = jj;
 | |
| 			r_cnjg(&q__3, &s);
 | |
| 			q__2.r = q__3.r * temp.r - q__3.i * temp.i, q__2.i = 
 | |
| 				q__3.r * temp.i + q__3.i * temp.r;
 | |
| 			i__7 = jj;
 | |
| 			q__4.r = ctemp.r * work[i__7].r - ctemp.i * work[i__7]
 | |
| 				.i, q__4.i = ctemp.r * work[i__7].i + ctemp.i 
 | |
| 				* work[i__7].r;
 | |
| 			q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | |
| 			work[i__6].r = q__1.r, work[i__6].i = q__1.i;
 | |
| 		    }
 | |
| 		    ++len;
 | |
| 		    ppw = ppw - nblst - 1;
 | |
| 		}
 | |
| 
 | |
| 		ppwo = nblst * nblst + (nnb + j - jcol - 1 << 1) * nnb + nnb;
 | |
| 		j0 = jrow - nnb;
 | |
| 		i__4 = j + 2;
 | |
| 		i__5 = -nnb;
 | |
| 		for (jrow = j0; i__5 < 0 ? jrow >= i__4 : jrow <= i__4; jrow 
 | |
| 			+= i__5) {
 | |
| 		    ppw = ppwo;
 | |
| 		    len = j + 2 - jcol;
 | |
| 		    i__6 = jrow;
 | |
| 		    for (i__ = jrow + nnb - 1; i__ >= i__6; --i__) {
 | |
| 			i__7 = i__ + j * a_dim1;
 | |
| 			ctemp.r = a[i__7].r, ctemp.i = a[i__7].i;
 | |
| 			i__7 = i__ + j * b_dim1;
 | |
| 			s.r = b[i__7].r, s.i = b[i__7].i;
 | |
| 			i__7 = ppw + len - 1;
 | |
| 			for (jj = ppw; jj <= i__7; ++jj) {
 | |
| 			    i__8 = jj + (nnb << 1);
 | |
| 			    temp.r = work[i__8].r, temp.i = work[i__8].i;
 | |
| 			    i__8 = jj + (nnb << 1);
 | |
| 			    q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, 
 | |
| 				    q__2.i = ctemp.r * temp.i + ctemp.i * 
 | |
| 				    temp.r;
 | |
| 			    i__9 = jj;
 | |
| 			    q__3.r = s.r * work[i__9].r - s.i * work[i__9].i, 
 | |
| 				    q__3.i = s.r * work[i__9].i + s.i * work[
 | |
| 				    i__9].r;
 | |
| 			    q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - 
 | |
| 				    q__3.i;
 | |
| 			    work[i__8].r = q__1.r, work[i__8].i = q__1.i;
 | |
| 			    i__8 = jj;
 | |
| 			    r_cnjg(&q__3, &s);
 | |
| 			    q__2.r = q__3.r * temp.r - q__3.i * temp.i, 
 | |
| 				    q__2.i = q__3.r * temp.i + q__3.i * 
 | |
| 				    temp.r;
 | |
| 			    i__9 = jj;
 | |
| 			    q__4.r = ctemp.r * work[i__9].r - ctemp.i * work[
 | |
| 				    i__9].i, q__4.i = ctemp.r * work[i__9].i 
 | |
| 				    + ctemp.i * work[i__9].r;
 | |
| 			    q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + 
 | |
| 				    q__4.i;
 | |
| 			    work[i__8].r = q__1.r, work[i__8].i = q__1.i;
 | |
| 			}
 | |
| 			++len;
 | |
| 			ppw = ppw - (nnb << 1) - 1;
 | |
| 		    }
 | |
| 		    ppwo += (nnb << 2) * nnb;
 | |
| 		}
 | |
| 
 | |
| /*              TOP denotes the number of top rows in A and B that will */
 | |
| /*              not be updated during the next steps. */
 | |
| 
 | |
| 		if (jcol <= 2) {
 | |
| 		    top = 0;
 | |
| 		} else {
 | |
| 		    top = jcol;
 | |
| 		}
 | |
| 
 | |
| /*              Propagate transformations through B and replace stored */
 | |
| /*              left sines/cosines by right sines/cosines. */
 | |
| 
 | |
| 		i__5 = j + 1;
 | |
| 		for (jj = *n; jj >= i__5; --jj) {
 | |
| 
 | |
| /*                 Update JJth column of B. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__4 = jj + 1;
 | |
| 		    i__6 = j + 2;
 | |
| 		    for (i__ = f2cmin(i__4,*ihi); i__ >= i__6; --i__) {
 | |
| 			i__4 = i__ + j * a_dim1;
 | |
| 			ctemp.r = a[i__4].r, ctemp.i = a[i__4].i;
 | |
| 			i__4 = i__ + j * b_dim1;
 | |
| 			s.r = b[i__4].r, s.i = b[i__4].i;
 | |
| 			i__4 = i__ + jj * b_dim1;
 | |
| 			temp.r = b[i__4].r, temp.i = b[i__4].i;
 | |
| 			i__4 = i__ + jj * b_dim1;
 | |
| 			q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, q__2.i =
 | |
| 				 ctemp.r * temp.i + ctemp.i * temp.r;
 | |
| 			r_cnjg(&q__4, &s);
 | |
| 			i__7 = i__ - 1 + jj * b_dim1;
 | |
| 			q__3.r = q__4.r * b[i__7].r - q__4.i * b[i__7].i, 
 | |
| 				q__3.i = q__4.r * b[i__7].i + q__4.i * b[i__7]
 | |
| 				.r;
 | |
| 			q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
 | |
| 			b[i__4].r = q__1.r, b[i__4].i = q__1.i;
 | |
| 			i__4 = i__ - 1 + jj * b_dim1;
 | |
| 			q__2.r = s.r * temp.r - s.i * temp.i, q__2.i = s.r * 
 | |
| 				temp.i + s.i * temp.r;
 | |
| 			i__7 = i__ - 1 + jj * b_dim1;
 | |
| 			q__3.r = ctemp.r * b[i__7].r - ctemp.i * b[i__7].i, 
 | |
| 				q__3.i = ctemp.r * b[i__7].i + ctemp.i * b[
 | |
| 				i__7].r;
 | |
| 			q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | |
| 			b[i__4].r = q__1.r, b[i__4].i = q__1.i;
 | |
| 		    }
 | |
| 
 | |
| /*                 Annihilate B( JJ+1, JJ ). */
 | |
| 
 | |
| 		    if (jj < *ihi) {
 | |
| 			i__6 = jj + 1 + (jj + 1) * b_dim1;
 | |
| 			temp.r = b[i__6].r, temp.i = b[i__6].i;
 | |
| 			clartg_(&temp, &b[jj + 1 + jj * b_dim1], &c__, &s, &b[
 | |
| 				jj + 1 + (jj + 1) * b_dim1]);
 | |
| 			i__6 = jj + 1 + jj * b_dim1;
 | |
| 			b[i__6].r = 0.f, b[i__6].i = 0.f;
 | |
| 			i__6 = jj - top;
 | |
| 			crot_(&i__6, &b[top + 1 + (jj + 1) * b_dim1], &c__1, &
 | |
| 				b[top + 1 + jj * b_dim1], &c__1, &c__, &s);
 | |
| 			i__6 = jj + 1 + j * a_dim1;
 | |
| 			q__1.r = c__, q__1.i = 0.f;
 | |
| 			a[i__6].r = q__1.r, a[i__6].i = q__1.i;
 | |
| 			i__6 = jj + 1 + j * b_dim1;
 | |
| 			r_cnjg(&q__2, &s);
 | |
| 			q__1.r = -q__2.r, q__1.i = -q__2.i;
 | |
| 			b[i__6].r = q__1.r, b[i__6].i = q__1.i;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Update A by transformations from right. */
 | |
| 
 | |
| 		jj = (*ihi - j - 1) % 3;
 | |
| 		i__5 = jj + 1;
 | |
| 		for (i__ = *ihi - j - 3; i__ >= i__5; i__ += -3) {
 | |
| 		    i__6 = j + 1 + i__ + j * a_dim1;
 | |
| 		    ctemp.r = a[i__6].r, ctemp.i = a[i__6].i;
 | |
| 		    i__6 = j + 1 + i__ + j * b_dim1;
 | |
| 		    q__1.r = -b[i__6].r, q__1.i = -b[i__6].i;
 | |
| 		    s.r = q__1.r, s.i = q__1.i;
 | |
| 		    i__6 = j + 2 + i__ + j * a_dim1;
 | |
| 		    c1.r = a[i__6].r, c1.i = a[i__6].i;
 | |
| 		    i__6 = j + 2 + i__ + j * b_dim1;
 | |
| 		    q__1.r = -b[i__6].r, q__1.i = -b[i__6].i;
 | |
| 		    s1.r = q__1.r, s1.i = q__1.i;
 | |
| 		    i__6 = j + 3 + i__ + j * a_dim1;
 | |
| 		    c2.r = a[i__6].r, c2.i = a[i__6].i;
 | |
| 		    i__6 = j + 3 + i__ + j * b_dim1;
 | |
| 		    q__1.r = -b[i__6].r, q__1.i = -b[i__6].i;
 | |
| 		    s2.r = q__1.r, s2.i = q__1.i;
 | |
| 
 | |
| 		    i__6 = *ihi;
 | |
| 		    for (k = top + 1; k <= i__6; ++k) {
 | |
| 			i__4 = k + (j + i__) * a_dim1;
 | |
| 			temp.r = a[i__4].r, temp.i = a[i__4].i;
 | |
| 			i__4 = k + (j + i__ + 1) * a_dim1;
 | |
| 			temp1.r = a[i__4].r, temp1.i = a[i__4].i;
 | |
| 			i__4 = k + (j + i__ + 2) * a_dim1;
 | |
| 			temp2.r = a[i__4].r, temp2.i = a[i__4].i;
 | |
| 			i__4 = k + (j + i__ + 3) * a_dim1;
 | |
| 			temp3.r = a[i__4].r, temp3.i = a[i__4].i;
 | |
| 			i__4 = k + (j + i__ + 3) * a_dim1;
 | |
| 			q__2.r = c2.r * temp3.r - c2.i * temp3.i, q__2.i = 
 | |
| 				c2.r * temp3.i + c2.i * temp3.r;
 | |
| 			r_cnjg(&q__4, &s2);
 | |
| 			q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, q__3.i =
 | |
| 				 q__4.r * temp2.i + q__4.i * temp2.r;
 | |
| 			q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | |
| 			a[i__4].r = q__1.r, a[i__4].i = q__1.i;
 | |
| 			q__3.r = -s2.r, q__3.i = -s2.i;
 | |
| 			q__2.r = q__3.r * temp3.r - q__3.i * temp3.i, q__2.i =
 | |
| 				 q__3.r * temp3.i + q__3.i * temp3.r;
 | |
| 			q__4.r = c2.r * temp2.r - c2.i * temp2.i, q__4.i = 
 | |
| 				c2.r * temp2.i + c2.i * temp2.r;
 | |
| 			q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | |
| 			temp2.r = q__1.r, temp2.i = q__1.i;
 | |
| 			i__4 = k + (j + i__ + 2) * a_dim1;
 | |
| 			q__2.r = c1.r * temp2.r - c1.i * temp2.i, q__2.i = 
 | |
| 				c1.r * temp2.i + c1.i * temp2.r;
 | |
| 			r_cnjg(&q__4, &s1);
 | |
| 			q__3.r = q__4.r * temp1.r - q__4.i * temp1.i, q__3.i =
 | |
| 				 q__4.r * temp1.i + q__4.i * temp1.r;
 | |
| 			q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | |
| 			a[i__4].r = q__1.r, a[i__4].i = q__1.i;
 | |
| 			q__3.r = -s1.r, q__3.i = -s1.i;
 | |
| 			q__2.r = q__3.r * temp2.r - q__3.i * temp2.i, q__2.i =
 | |
| 				 q__3.r * temp2.i + q__3.i * temp2.r;
 | |
| 			q__4.r = c1.r * temp1.r - c1.i * temp1.i, q__4.i = 
 | |
| 				c1.r * temp1.i + c1.i * temp1.r;
 | |
| 			q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | |
| 			temp1.r = q__1.r, temp1.i = q__1.i;
 | |
| 			i__4 = k + (j + i__ + 1) * a_dim1;
 | |
| 			q__2.r = ctemp.r * temp1.r - ctemp.i * temp1.i, 
 | |
| 				q__2.i = ctemp.r * temp1.i + ctemp.i * 
 | |
| 				temp1.r;
 | |
| 			r_cnjg(&q__4, &s);
 | |
| 			q__3.r = q__4.r * temp.r - q__4.i * temp.i, q__3.i = 
 | |
| 				q__4.r * temp.i + q__4.i * temp.r;
 | |
| 			q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | |
| 			a[i__4].r = q__1.r, a[i__4].i = q__1.i;
 | |
| 			i__4 = k + (j + i__) * a_dim1;
 | |
| 			q__3.r = -s.r, q__3.i = -s.i;
 | |
| 			q__2.r = q__3.r * temp1.r - q__3.i * temp1.i, q__2.i =
 | |
| 				 q__3.r * temp1.i + q__3.i * temp1.r;
 | |
| 			q__4.r = ctemp.r * temp.r - ctemp.i * temp.i, q__4.i =
 | |
| 				 ctemp.r * temp.i + ctemp.i * temp.r;
 | |
| 			q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
 | |
| 			a[i__4].r = q__1.r, a[i__4].i = q__1.i;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (jj > 0) {
 | |
| 		    for (i__ = jj; i__ >= 1; --i__) {
 | |
| 			i__5 = j + 1 + i__ + j * a_dim1;
 | |
| 			c__ = (doublereal) a[i__5].r;
 | |
| 			i__5 = *ihi - top;
 | |
| 			r_cnjg(&q__2, &b[j + 1 + i__ + j * b_dim1]);
 | |
| 			q__1.r = -q__2.r, q__1.i = -q__2.i;
 | |
| 			crot_(&i__5, &a[top + 1 + (j + i__ + 1) * a_dim1], &
 | |
| 				c__1, &a[top + 1 + (j + i__) * a_dim1], &c__1,
 | |
| 				 &c__, &q__1);
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Update (J+1)th column of A by transformations from left. */
 | |
| 
 | |
| 		if (j < jcol + nnb - 1) {
 | |
| 		    len = j + 1 - jcol;
 | |
| 
 | |
| /*                 Multiply with the trailing accumulated unitary */
 | |
| /*                 matrix, which takes the form */
 | |
| 
 | |
| /*                        [  U11  U12  ] */
 | |
| /*                    U = [            ], */
 | |
| /*                        [  U21  U22  ] */
 | |
| 
 | |
| /*                 where U21 is a LEN-by-LEN matrix and U12 is lower */
 | |
| /*                 triangular. */
 | |
| 
 | |
| 		    jrow = *ihi - nblst + 1;
 | |
| 		    cgemv_("Conjugate", &nblst, &len, &c_b1, &work[1], &nblst,
 | |
| 			     &a[jrow + (j + 1) * a_dim1], &c__1, &c_b2, &work[
 | |
| 			    pw], &c__1);
 | |
| 		    ppw = pw + len;
 | |
| 		    i__5 = jrow + nblst - len - 1;
 | |
| 		    for (i__ = jrow; i__ <= i__5; ++i__) {
 | |
| 			i__6 = ppw;
 | |
| 			i__4 = i__ + (j + 1) * a_dim1;
 | |
| 			work[i__6].r = a[i__4].r, work[i__6].i = a[i__4].i;
 | |
| 			++ppw;
 | |
| 		    }
 | |
| 		    i__5 = nblst - len;
 | |
| 		    ctrmv_("Lower", "Conjugate", "Non-unit", &i__5, &work[len 
 | |
| 			    * nblst + 1], &nblst, &work[pw + len], &c__1);
 | |
| 		    i__5 = nblst - len;
 | |
| 		    cgemv_("Conjugate", &len, &i__5, &c_b1, &work[(len + 1) * 
 | |
| 			    nblst - len + 1], &nblst, &a[jrow + nblst - len + 
 | |
| 			    (j + 1) * a_dim1], &c__1, &c_b1, &work[pw + len], 
 | |
| 			    &c__1);
 | |
| 		    ppw = pw;
 | |
| 		    i__5 = jrow + nblst - 1;
 | |
| 		    for (i__ = jrow; i__ <= i__5; ++i__) {
 | |
| 			i__6 = i__ + (j + 1) * a_dim1;
 | |
| 			i__4 = ppw;
 | |
| 			a[i__6].r = work[i__4].r, a[i__6].i = work[i__4].i;
 | |
| 			++ppw;
 | |
| 		    }
 | |
| 
 | |
| /*                 Multiply with the other accumulated unitary */
 | |
| /*                 matrices, which take the form */
 | |
| 
 | |
| /*                        [  U11  U12   0  ] */
 | |
| /*                        [                ] */
 | |
| /*                    U = [  U21  U22   0  ], */
 | |
| /*                        [                ] */
 | |
| /*                        [   0    0    I  ] */
 | |
| 
 | |
| /*                 where I denotes the (NNB-LEN)-by-(NNB-LEN) identity */
 | |
| /*                 matrix, U21 is a LEN-by-LEN upper triangular matrix */
 | |
| /*                 and U12 is an NNB-by-NNB lower triangular matrix. */
 | |
| 
 | |
| 		    ppwo = nblst * nblst + 1;
 | |
| 		    j0 = jrow - nnb;
 | |
| 		    i__5 = jcol + 1;
 | |
| 		    i__6 = -nnb;
 | |
| 		    for (jrow = j0; i__6 < 0 ? jrow >= i__5 : jrow <= i__5; 
 | |
| 			    jrow += i__6) {
 | |
| 			ppw = pw + len;
 | |
| 			i__4 = jrow + nnb - 1;
 | |
| 			for (i__ = jrow; i__ <= i__4; ++i__) {
 | |
| 			    i__7 = ppw;
 | |
| 			    i__8 = i__ + (j + 1) * a_dim1;
 | |
| 			    work[i__7].r = a[i__8].r, work[i__7].i = a[i__8]
 | |
| 				    .i;
 | |
| 			    ++ppw;
 | |
| 			}
 | |
| 			ppw = pw;
 | |
| 			i__4 = jrow + nnb + len - 1;
 | |
| 			for (i__ = jrow + nnb; i__ <= i__4; ++i__) {
 | |
| 			    i__7 = ppw;
 | |
| 			    i__8 = i__ + (j + 1) * a_dim1;
 | |
| 			    work[i__7].r = a[i__8].r, work[i__7].i = a[i__8]
 | |
| 				    .i;
 | |
| 			    ++ppw;
 | |
| 			}
 | |
| 			i__4 = nnb << 1;
 | |
| 			ctrmv_("Upper", "Conjugate", "Non-unit", &len, &work[
 | |
| 				ppwo + nnb], &i__4, &work[pw], &c__1);
 | |
| 			i__4 = nnb << 1;
 | |
| 			ctrmv_("Lower", "Conjugate", "Non-unit", &nnb, &work[
 | |
| 				ppwo + (len << 1) * nnb], &i__4, &work[pw + 
 | |
| 				len], &c__1);
 | |
| 			i__4 = nnb << 1;
 | |
| 			cgemv_("Conjugate", &nnb, &len, &c_b1, &work[ppwo], &
 | |
| 				i__4, &a[jrow + (j + 1) * a_dim1], &c__1, &
 | |
| 				c_b1, &work[pw], &c__1);
 | |
| 			i__4 = nnb << 1;
 | |
| 			cgemv_("Conjugate", &len, &nnb, &c_b1, &work[ppwo + (
 | |
| 				len << 1) * nnb + nnb], &i__4, &a[jrow + nnb 
 | |
| 				+ (j + 1) * a_dim1], &c__1, &c_b1, &work[pw + 
 | |
| 				len], &c__1);
 | |
| 			ppw = pw;
 | |
| 			i__4 = jrow + len + nnb - 1;
 | |
| 			for (i__ = jrow; i__ <= i__4; ++i__) {
 | |
| 			    i__7 = i__ + (j + 1) * a_dim1;
 | |
| 			    i__8 = ppw;
 | |
| 			    a[i__7].r = work[i__8].r, a[i__7].i = work[i__8]
 | |
| 				    .i;
 | |
| 			    ++ppw;
 | |
| 			}
 | |
| 			ppwo += (nnb << 2) * nnb;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Apply accumulated unitary matrices to A. */
 | |
| 
 | |
| 	    cola = *n - jcol - nnb + 1;
 | |
| 	    j = *ihi - nblst + 1;
 | |
| 	    cgemm_("Conjugate", "No Transpose", &nblst, &cola, &nblst, &c_b1, 
 | |
| 		    &work[1], &nblst, &a[j + (jcol + nnb) * a_dim1], lda, &
 | |
| 		    c_b2, &work[pw], &nblst);
 | |
| 	    clacpy_("All", &nblst, &cola, &work[pw], &nblst, &a[j + (jcol + 
 | |
| 		    nnb) * a_dim1], lda);
 | |
| 	    ppwo = nblst * nblst + 1;
 | |
| 	    j0 = j - nnb;
 | |
| 	    i__3 = jcol + 1;
 | |
| 	    i__6 = -nnb;
 | |
| 	    for (j = j0; i__6 < 0 ? j >= i__3 : j <= i__3; j += i__6) {
 | |
| 		if (blk22) {
 | |
| 
 | |
| /*                 Exploit the structure of */
 | |
| 
 | |
| /*                        [  U11  U12  ] */
 | |
| /*                    U = [            ] */
 | |
| /*                        [  U21  U22  ], */
 | |
| 
 | |
| /*                 where all blocks are NNB-by-NNB, U21 is upper */
 | |
| /*                 triangular and U12 is lower triangular. */
 | |
| 
 | |
| 		    i__5 = nnb << 1;
 | |
| 		    i__4 = nnb << 1;
 | |
| 		    i__7 = *lwork - pw + 1;
 | |
| 		    cunm22_("Left", "Conjugate", &i__5, &cola, &nnb, &nnb, &
 | |
| 			    work[ppwo], &i__4, &a[j + (jcol + nnb) * a_dim1], 
 | |
| 			    lda, &work[pw], &i__7, &ierr);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Ignore the structure of U. */
 | |
| 
 | |
| 		    i__5 = nnb << 1;
 | |
| 		    i__4 = nnb << 1;
 | |
| 		    i__7 = nnb << 1;
 | |
| 		    i__8 = nnb << 1;
 | |
| 		    cgemm_("Conjugate", "No Transpose", &i__5, &cola, &i__4, &
 | |
| 			    c_b1, &work[ppwo], &i__7, &a[j + (jcol + nnb) * 
 | |
| 			    a_dim1], lda, &c_b2, &work[pw], &i__8);
 | |
| 		    i__5 = nnb << 1;
 | |
| 		    i__4 = nnb << 1;
 | |
| 		    clacpy_("All", &i__5, &cola, &work[pw], &i__4, &a[j + (
 | |
| 			    jcol + nnb) * a_dim1], lda);
 | |
| 		}
 | |
| 		ppwo += (nnb << 2) * nnb;
 | |
| 	    }
 | |
| 
 | |
| /*           Apply accumulated unitary matrices to Q. */
 | |
| 
 | |
| 	    if (wantq) {
 | |
| 		j = *ihi - nblst + 1;
 | |
| 		if (initq) {
 | |
| /* Computing MAX */
 | |
| 		    i__6 = 2, i__3 = j - jcol + 1;
 | |
| 		    topq = f2cmax(i__6,i__3);
 | |
| 		    nh = *ihi - topq + 1;
 | |
| 		} else {
 | |
| 		    topq = 1;
 | |
| 		    nh = *n;
 | |
| 		}
 | |
| 		cgemm_("No Transpose", "No Transpose", &nh, &nblst, &nblst, &
 | |
| 			c_b1, &q[topq + j * q_dim1], ldq, &work[1], &nblst, &
 | |
| 			c_b2, &work[pw], &nh);
 | |
| 		clacpy_("All", &nh, &nblst, &work[pw], &nh, &q[topq + j * 
 | |
| 			q_dim1], ldq);
 | |
| 		ppwo = nblst * nblst + 1;
 | |
| 		j0 = j - nnb;
 | |
| 		i__6 = jcol + 1;
 | |
| 		i__3 = -nnb;
 | |
| 		for (j = j0; i__3 < 0 ? j >= i__6 : j <= i__6; j += i__3) {
 | |
| 		    if (initq) {
 | |
| /* Computing MAX */
 | |
| 			i__5 = 2, i__4 = j - jcol + 1;
 | |
| 			topq = f2cmax(i__5,i__4);
 | |
| 			nh = *ihi - topq + 1;
 | |
| 		    }
 | |
| 		    if (blk22) {
 | |
| 
 | |
| /*                    Exploit the structure of U. */
 | |
| 
 | |
| 			i__5 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = *lwork - pw + 1;
 | |
| 			cunm22_("Right", "No Transpose", &nh, &i__5, &nnb, &
 | |
| 				nnb, &work[ppwo], &i__4, &q[topq + j * q_dim1]
 | |
| 				, ldq, &work[pw], &i__7, &ierr);
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Ignore the structure of U. */
 | |
| 
 | |
| 			i__5 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = nnb << 1;
 | |
| 			cgemm_("No Transpose", "No Transpose", &nh, &i__5, &
 | |
| 				i__4, &c_b1, &q[topq + j * q_dim1], ldq, &
 | |
| 				work[ppwo], &i__7, &c_b2, &work[pw], &nh);
 | |
| 			i__5 = nnb << 1;
 | |
| 			clacpy_("All", &nh, &i__5, &work[pw], &nh, &q[topq + 
 | |
| 				j * q_dim1], ldq);
 | |
| 		    }
 | |
| 		    ppwo += (nnb << 2) * nnb;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Accumulate right Givens rotations if required. */
 | |
| 
 | |
| 	    if (wantz || top > 0) {
 | |
| 
 | |
| /*              Initialize small unitary factors that will hold the */
 | |
| /*              accumulated Givens rotations in workspace. */
 | |
| 
 | |
| 		claset_("All", &nblst, &nblst, &c_b2, &c_b1, &work[1], &nblst);
 | |
| 		pw = nblst * nblst + 1;
 | |
| 		i__3 = n2nb;
 | |
| 		for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		    i__6 = nnb << 1;
 | |
| 		    i__5 = nnb << 1;
 | |
| 		    i__4 = nnb << 1;
 | |
| 		    claset_("All", &i__6, &i__5, &c_b2, &c_b1, &work[pw], &
 | |
| 			    i__4);
 | |
| 		    pw += (nnb << 2) * nnb;
 | |
| 		}
 | |
| 
 | |
| /*              Accumulate Givens rotations into workspace array. */
 | |
| 
 | |
| 		i__3 = jcol + nnb - 1;
 | |
| 		for (j = jcol; j <= i__3; ++j) {
 | |
| 		    ppw = (nblst + 1) * (nblst - 2) - j + jcol + 1;
 | |
| 		    len = j + 2 - jcol;
 | |
| 		    jrow = j + n2nb * nnb + 2;
 | |
| 		    i__6 = jrow;
 | |
| 		    for (i__ = *ihi; i__ >= i__6; --i__) {
 | |
| 			i__5 = i__ + j * a_dim1;
 | |
| 			ctemp.r = a[i__5].r, ctemp.i = a[i__5].i;
 | |
| 			i__5 = i__ + j * a_dim1;
 | |
| 			a[i__5].r = 0.f, a[i__5].i = 0.f;
 | |
| 			i__5 = i__ + j * b_dim1;
 | |
| 			s.r = b[i__5].r, s.i = b[i__5].i;
 | |
| 			i__5 = i__ + j * b_dim1;
 | |
| 			b[i__5].r = 0.f, b[i__5].i = 0.f;
 | |
| 			i__5 = ppw + len - 1;
 | |
| 			for (jj = ppw; jj <= i__5; ++jj) {
 | |
| 			    i__4 = jj + nblst;
 | |
| 			    temp.r = work[i__4].r, temp.i = work[i__4].i;
 | |
| 			    i__4 = jj + nblst;
 | |
| 			    q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, 
 | |
| 				    q__2.i = ctemp.r * temp.i + ctemp.i * 
 | |
| 				    temp.r;
 | |
| 			    r_cnjg(&q__4, &s);
 | |
| 			    i__7 = jj;
 | |
| 			    q__3.r = q__4.r * work[i__7].r - q__4.i * work[
 | |
| 				    i__7].i, q__3.i = q__4.r * work[i__7].i + 
 | |
| 				    q__4.i * work[i__7].r;
 | |
| 			    q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - 
 | |
| 				    q__3.i;
 | |
| 			    work[i__4].r = q__1.r, work[i__4].i = q__1.i;
 | |
| 			    i__4 = jj;
 | |
| 			    q__2.r = s.r * temp.r - s.i * temp.i, q__2.i = 
 | |
| 				    s.r * temp.i + s.i * temp.r;
 | |
| 			    i__7 = jj;
 | |
| 			    q__3.r = ctemp.r * work[i__7].r - ctemp.i * work[
 | |
| 				    i__7].i, q__3.i = ctemp.r * work[i__7].i 
 | |
| 				    + ctemp.i * work[i__7].r;
 | |
| 			    q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + 
 | |
| 				    q__3.i;
 | |
| 			    work[i__4].r = q__1.r, work[i__4].i = q__1.i;
 | |
| 			}
 | |
| 			++len;
 | |
| 			ppw = ppw - nblst - 1;
 | |
| 		    }
 | |
| 
 | |
| 		    ppwo = nblst * nblst + (nnb + j - jcol - 1 << 1) * nnb + 
 | |
| 			    nnb;
 | |
| 		    j0 = jrow - nnb;
 | |
| 		    i__6 = j + 2;
 | |
| 		    i__5 = -nnb;
 | |
| 		    for (jrow = j0; i__5 < 0 ? jrow >= i__6 : jrow <= i__6; 
 | |
| 			    jrow += i__5) {
 | |
| 			ppw = ppwo;
 | |
| 			len = j + 2 - jcol;
 | |
| 			i__4 = jrow;
 | |
| 			for (i__ = jrow + nnb - 1; i__ >= i__4; --i__) {
 | |
| 			    i__7 = i__ + j * a_dim1;
 | |
| 			    ctemp.r = a[i__7].r, ctemp.i = a[i__7].i;
 | |
| 			    i__7 = i__ + j * a_dim1;
 | |
| 			    a[i__7].r = 0.f, a[i__7].i = 0.f;
 | |
| 			    i__7 = i__ + j * b_dim1;
 | |
| 			    s.r = b[i__7].r, s.i = b[i__7].i;
 | |
| 			    i__7 = i__ + j * b_dim1;
 | |
| 			    b[i__7].r = 0.f, b[i__7].i = 0.f;
 | |
| 			    i__7 = ppw + len - 1;
 | |
| 			    for (jj = ppw; jj <= i__7; ++jj) {
 | |
| 				i__8 = jj + (nnb << 1);
 | |
| 				temp.r = work[i__8].r, temp.i = work[i__8].i;
 | |
| 				i__8 = jj + (nnb << 1);
 | |
| 				q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, 
 | |
| 					q__2.i = ctemp.r * temp.i + ctemp.i * 
 | |
| 					temp.r;
 | |
| 				r_cnjg(&q__4, &s);
 | |
| 				i__9 = jj;
 | |
| 				q__3.r = q__4.r * work[i__9].r - q__4.i * 
 | |
| 					work[i__9].i, q__3.i = q__4.r * work[
 | |
| 					i__9].i + q__4.i * work[i__9].r;
 | |
| 				q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - 
 | |
| 					q__3.i;
 | |
| 				work[i__8].r = q__1.r, work[i__8].i = q__1.i;
 | |
| 				i__8 = jj;
 | |
| 				q__2.r = s.r * temp.r - s.i * temp.i, q__2.i =
 | |
| 					 s.r * temp.i + s.i * temp.r;
 | |
| 				i__9 = jj;
 | |
| 				q__3.r = ctemp.r * work[i__9].r - ctemp.i * 
 | |
| 					work[i__9].i, q__3.i = ctemp.r * work[
 | |
| 					i__9].i + ctemp.i * work[i__9].r;
 | |
| 				q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + 
 | |
| 					q__3.i;
 | |
| 				work[i__8].r = q__1.r, work[i__8].i = q__1.i;
 | |
| 			    }
 | |
| 			    ++len;
 | |
| 			    ppw = ppw - (nnb << 1) - 1;
 | |
| 			}
 | |
| 			ppwo += (nnb << 2) * nnb;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| 		i__3 = *ihi - jcol - 1;
 | |
| 		claset_("Lower", &i__3, &nnb, &c_b2, &c_b2, &a[jcol + 2 + 
 | |
| 			jcol * a_dim1], lda);
 | |
| 		i__3 = *ihi - jcol - 1;
 | |
| 		claset_("Lower", &i__3, &nnb, &c_b2, &c_b2, &b[jcol + 2 + 
 | |
| 			jcol * b_dim1], ldb);
 | |
| 	    }
 | |
| 
 | |
| /*           Apply accumulated unitary matrices to A and B. */
 | |
| 
 | |
| 	    if (top > 0) {
 | |
| 		j = *ihi - nblst + 1;
 | |
| 		cgemm_("No Transpose", "No Transpose", &top, &nblst, &nblst, &
 | |
| 			c_b1, &a[j * a_dim1 + 1], lda, &work[1], &nblst, &
 | |
| 			c_b2, &work[pw], &top);
 | |
| 		clacpy_("All", &top, &nblst, &work[pw], &top, &a[j * a_dim1 + 
 | |
| 			1], lda);
 | |
| 		ppwo = nblst * nblst + 1;
 | |
| 		j0 = j - nnb;
 | |
| 		i__3 = jcol + 1;
 | |
| 		i__5 = -nnb;
 | |
| 		for (j = j0; i__5 < 0 ? j >= i__3 : j <= i__3; j += i__5) {
 | |
| 		    if (blk22) {
 | |
| 
 | |
| /*                    Exploit the structure of U. */
 | |
| 
 | |
| 			i__6 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = *lwork - pw + 1;
 | |
| 			cunm22_("Right", "No Transpose", &top, &i__6, &nnb, &
 | |
| 				nnb, &work[ppwo], &i__4, &a[j * a_dim1 + 1], 
 | |
| 				lda, &work[pw], &i__7, &ierr);
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Ignore the structure of U. */
 | |
| 
 | |
| 			i__6 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = nnb << 1;
 | |
| 			cgemm_("No Transpose", "No Transpose", &top, &i__6, &
 | |
| 				i__4, &c_b1, &a[j * a_dim1 + 1], lda, &work[
 | |
| 				ppwo], &i__7, &c_b2, &work[pw], &top);
 | |
| 			i__6 = nnb << 1;
 | |
| 			clacpy_("All", &top, &i__6, &work[pw], &top, &a[j * 
 | |
| 				a_dim1 + 1], lda);
 | |
| 		    }
 | |
| 		    ppwo += (nnb << 2) * nnb;
 | |
| 		}
 | |
| 
 | |
| 		j = *ihi - nblst + 1;
 | |
| 		cgemm_("No Transpose", "No Transpose", &top, &nblst, &nblst, &
 | |
| 			c_b1, &b[j * b_dim1 + 1], ldb, &work[1], &nblst, &
 | |
| 			c_b2, &work[pw], &top);
 | |
| 		clacpy_("All", &top, &nblst, &work[pw], &top, &b[j * b_dim1 + 
 | |
| 			1], ldb);
 | |
| 		ppwo = nblst * nblst + 1;
 | |
| 		j0 = j - nnb;
 | |
| 		i__5 = jcol + 1;
 | |
| 		i__3 = -nnb;
 | |
| 		for (j = j0; i__3 < 0 ? j >= i__5 : j <= i__5; j += i__3) {
 | |
| 		    if (blk22) {
 | |
| 
 | |
| /*                    Exploit the structure of U. */
 | |
| 
 | |
| 			i__6 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = *lwork - pw + 1;
 | |
| 			cunm22_("Right", "No Transpose", &top, &i__6, &nnb, &
 | |
| 				nnb, &work[ppwo], &i__4, &b[j * b_dim1 + 1], 
 | |
| 				ldb, &work[pw], &i__7, &ierr);
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Ignore the structure of U. */
 | |
| 
 | |
| 			i__6 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = nnb << 1;
 | |
| 			cgemm_("No Transpose", "No Transpose", &top, &i__6, &
 | |
| 				i__4, &c_b1, &b[j * b_dim1 + 1], ldb, &work[
 | |
| 				ppwo], &i__7, &c_b2, &work[pw], &top);
 | |
| 			i__6 = nnb << 1;
 | |
| 			clacpy_("All", &top, &i__6, &work[pw], &top, &b[j * 
 | |
| 				b_dim1 + 1], ldb);
 | |
| 		    }
 | |
| 		    ppwo += (nnb << 2) * nnb;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Apply accumulated unitary matrices to Z. */
 | |
| 
 | |
| 	    if (wantz) {
 | |
| 		j = *ihi - nblst + 1;
 | |
| 		if (initq) {
 | |
| /* Computing MAX */
 | |
| 		    i__3 = 2, i__5 = j - jcol + 1;
 | |
| 		    topq = f2cmax(i__3,i__5);
 | |
| 		    nh = *ihi - topq + 1;
 | |
| 		} else {
 | |
| 		    topq = 1;
 | |
| 		    nh = *n;
 | |
| 		}
 | |
| 		cgemm_("No Transpose", "No Transpose", &nh, &nblst, &nblst, &
 | |
| 			c_b1, &z__[topq + j * z_dim1], ldz, &work[1], &nblst, 
 | |
| 			&c_b2, &work[pw], &nh);
 | |
| 		clacpy_("All", &nh, &nblst, &work[pw], &nh, &z__[topq + j * 
 | |
| 			z_dim1], ldz);
 | |
| 		ppwo = nblst * nblst + 1;
 | |
| 		j0 = j - nnb;
 | |
| 		i__3 = jcol + 1;
 | |
| 		i__5 = -nnb;
 | |
| 		for (j = j0; i__5 < 0 ? j >= i__3 : j <= i__3; j += i__5) {
 | |
| 		    if (initq) {
 | |
| /* Computing MAX */
 | |
| 			i__6 = 2, i__4 = j - jcol + 1;
 | |
| 			topq = f2cmax(i__6,i__4);
 | |
| 			nh = *ihi - topq + 1;
 | |
| 		    }
 | |
| 		    if (blk22) {
 | |
| 
 | |
| /*                    Exploit the structure of U. */
 | |
| 
 | |
| 			i__6 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = *lwork - pw + 1;
 | |
| 			cunm22_("Right", "No Transpose", &nh, &i__6, &nnb, &
 | |
| 				nnb, &work[ppwo], &i__4, &z__[topq + j * 
 | |
| 				z_dim1], ldz, &work[pw], &i__7, &ierr);
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Ignore the structure of U. */
 | |
| 
 | |
| 			i__6 = nnb << 1;
 | |
| 			i__4 = nnb << 1;
 | |
| 			i__7 = nnb << 1;
 | |
| 			cgemm_("No Transpose", "No Transpose", &nh, &i__6, &
 | |
| 				i__4, &c_b1, &z__[topq + j * z_dim1], ldz, &
 | |
| 				work[ppwo], &i__7, &c_b2, &work[pw], &nh);
 | |
| 			i__6 = nnb << 1;
 | |
| 			clacpy_("All", &nh, &i__6, &work[pw], &nh, &z__[topq 
 | |
| 				+ j * z_dim1], ldz);
 | |
| 		    }
 | |
| 		    ppwo += (nnb << 2) * nnb;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Use unblocked code to reduce the rest of the matrix */
 | |
| /*     Avoid re-initialization of modified Q and Z. */
 | |
| 
 | |
|     *(unsigned char *)compq2 = *(unsigned char *)compq;
 | |
|     *(unsigned char *)compz2 = *(unsigned char *)compz;
 | |
|     if (jcol != *ilo) {
 | |
| 	if (wantq) {
 | |
| 	    *(unsigned char *)compq2 = 'V';
 | |
| 	}
 | |
| 	if (wantz) {
 | |
| 	    *(unsigned char *)compz2 = 'V';
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (jcol < *ihi) {
 | |
| 	cgghrd_(compq2, compz2, n, &jcol, ihi, &a[a_offset], lda, &b[b_offset]
 | |
| 		, ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &ierr);
 | |
|     }
 | |
|     q__1.r = (real) lwkopt, q__1.i = 0.f;
 | |
|     work[1].r = q__1.r, work[1].i = q__1.i;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CGGHD3 */
 | |
| 
 | |
| } /* cgghd3_ */
 | |
| 
 |