1337 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1337 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief <b> CGESVXX computes the solution to system of linear equations A * X = B for GE matrices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGESVXX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvxx
 | |
| .f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvxx
 | |
| .f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvxx
 | |
| .f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, */
 | |
| /*                           EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW, */
 | |
| /*                           BERR, N_ERR_BNDS, ERR_BNDS_NORM, */
 | |
| /*                           ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, */
 | |
| /*                           INFO ) */
 | |
| 
 | |
| /*       CHARACTER          EQUED, FACT, TRANS */
 | |
| /*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, */
 | |
| /*      $                   N_ERR_BNDS */
 | |
| /*       REAL               RCOND, RPVGRW */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
 | |
| /*      $                   X( LDX , * ),WORK( * ) */
 | |
| /*       REAL               R( * ), C( * ), PARAMS( * ), BERR( * ), */
 | |
| /*      $                   ERR_BNDS_NORM( NRHS, * ), */
 | |
| /*      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    CGESVXX uses the LU factorization to compute the solution to a */
 | |
| /* >    complex system of linear equations  A * X = B,  where A is an */
 | |
| /* >    N-by-N matrix and X and B are N-by-NRHS matrices. */
 | |
| /* > */
 | |
| /* >    If requested, both normwise and maximum componentwise error bounds */
 | |
| /* >    are returned. CGESVXX will return a solution with a tiny */
 | |
| /* >    guaranteed error (O(eps) where eps is the working machine */
 | |
| /* >    precision) unless the matrix is very ill-conditioned, in which */
 | |
| /* >    case a warning is returned. Relevant condition numbers also are */
 | |
| /* >    calculated and returned. */
 | |
| /* > */
 | |
| /* >    CGESVXX accepts user-provided factorizations and equilibration */
 | |
| /* >    factors; see the definitions of the FACT and EQUED options. */
 | |
| /* >    Solving with refinement and using a factorization from a previous */
 | |
| /* >    CGESVXX call will also produce a solution with either O(eps) */
 | |
| /* >    errors or warnings, but we cannot make that claim for general */
 | |
| /* >    user-provided factorizations and equilibration factors if they */
 | |
| /* >    differ from what CGESVXX would itself produce. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Description: */
 | |
| /*  ================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    The following steps are performed: */
 | |
| /* > */
 | |
| /* >    1. If FACT = 'E', real scaling factors are computed to equilibrate */
 | |
| /* >    the system: */
 | |
| /* > */
 | |
| /* >      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B */
 | |
| /* >      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
 | |
| /* >      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
 | |
| /* > */
 | |
| /* >    Whether or not the system will be equilibrated depends on the */
 | |
| /* >    scaling of the matrix A, but if equilibration is used, A is */
 | |
| /* >    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
 | |
| /* >    or diag(C)*B (if TRANS = 'T' or 'C'). */
 | |
| /* > */
 | |
| /* >    2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
 | |
| /* >    the matrix A (after equilibration if FACT = 'E') as */
 | |
| /* > */
 | |
| /* >      A = P * L * U, */
 | |
| /* > */
 | |
| /* >    where P is a permutation matrix, L is a unit lower triangular */
 | |
| /* >    matrix, and U is upper triangular. */
 | |
| /* > */
 | |
| /* >    3. If some U(i,i)=0, so that U is exactly singular, then the */
 | |
| /* >    routine returns with INFO = i. Otherwise, the factored form of A */
 | |
| /* >    is used to estimate the condition number of the matrix A (see */
 | |
| /* >    argument RCOND). If the reciprocal of the condition number is less */
 | |
| /* >    than machine precision, the routine still goes on to solve for X */
 | |
| /* >    and compute error bounds as described below. */
 | |
| /* > */
 | |
| /* >    4. The system of equations is solved for X using the factored form */
 | |
| /* >    of A. */
 | |
| /* > */
 | |
| /* >    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
 | |
| /* >    the routine will use iterative refinement to try to get a small */
 | |
| /* >    error and error bounds.  Refinement calculates the residual to at */
 | |
| /* >    least twice the working precision. */
 | |
| /* > */
 | |
| /* >    6. If equilibration was used, the matrix X is premultiplied by */
 | |
| /* >    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
 | |
| /* >    that it solves the original system before equilibration. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \verbatim */
 | |
| /* >     Some optional parameters are bundled in the PARAMS array.  These */
 | |
| /* >     settings determine how refinement is performed, but often the */
 | |
| /* >     defaults are acceptable.  If the defaults are acceptable, users */
 | |
| /* >     can pass NPARAMS = 0 which prevents the source code from accessing */
 | |
| /* >     the PARAMS argument. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] FACT */
 | |
| /* > \verbatim */
 | |
| /* >          FACT is CHARACTER*1 */
 | |
| /* >     Specifies whether or not the factored form of the matrix A is */
 | |
| /* >     supplied on entry, and if not, whether the matrix A should be */
 | |
| /* >     equilibrated before it is factored. */
 | |
| /* >       = 'F':  On entry, AF and IPIV contain the factored form of A. */
 | |
| /* >               If EQUED is not 'N', the matrix A has been */
 | |
| /* >               equilibrated with scaling factors given by R and C. */
 | |
| /* >               A, AF, and IPIV are not modified. */
 | |
| /* >       = 'N':  The matrix A will be copied to AF and factored. */
 | |
| /* >       = 'E':  The matrix A will be equilibrated if necessary, then */
 | |
| /* >               copied to AF and factored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >     Specifies the form of the system of equations: */
 | |
| /* >       = 'N':  A * X = B     (No transpose) */
 | |
| /* >       = 'T':  A**T * X = B  (Transpose) */
 | |
| /* >       = 'C':  A**H * X = B  (Conjugate Transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >     The number of linear equations, i.e., the order of the */
 | |
| /* >     matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >     The number of right hand sides, i.e., the number of columns */
 | |
| /* >     of the matrices B and X.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA,N) */
 | |
| /* >     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is */
 | |
| /* >     not 'N', then A must have been equilibrated by the scaling */
 | |
| /* >     factors in R and/or C.  A is not modified if FACT = 'F' or */
 | |
| /* >     'N', or if FACT = 'E' and EQUED = 'N' on exit. */
 | |
| /* > */
 | |
| /* >     On exit, if EQUED .ne. 'N', A is scaled as follows: */
 | |
| /* >     EQUED = 'R':  A := diag(R) * A */
 | |
| /* >     EQUED = 'C':  A := A * diag(C) */
 | |
| /* >     EQUED = 'B':  A := diag(R) * A * diag(C). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >     The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AF */
 | |
| /* > \verbatim */
 | |
| /* >          AF is COMPLEX array, dimension (LDAF,N) */
 | |
| /* >     If FACT = 'F', then AF is an input argument and on entry */
 | |
| /* >     contains the factors L and U from the factorization */
 | |
| /* >     A = P*L*U as computed by CGETRF.  If EQUED .ne. 'N', then */
 | |
| /* >     AF is the factored form of the equilibrated matrix A. */
 | |
| /* > */
 | |
| /* >     If FACT = 'N', then AF is an output argument and on exit */
 | |
| /* >     returns the factors L and U from the factorization A = P*L*U */
 | |
| /* >     of the original matrix A. */
 | |
| /* > */
 | |
| /* >     If FACT = 'E', then AF is an output argument and on exit */
 | |
| /* >     returns the factors L and U from the factorization A = P*L*U */
 | |
| /* >     of the equilibrated matrix A (see the description of A for */
 | |
| /* >     the form of the equilibrated matrix). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAF */
 | |
| /* > \verbatim */
 | |
| /* >          LDAF is INTEGER */
 | |
| /* >     The leading dimension of the array AF.  LDAF >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >     If FACT = 'F', then IPIV is an input argument and on entry */
 | |
| /* >     contains the pivot indices from the factorization A = P*L*U */
 | |
| /* >     as computed by CGETRF; row i of the matrix was interchanged */
 | |
| /* >     with row IPIV(i). */
 | |
| /* > */
 | |
| /* >     If FACT = 'N', then IPIV is an output argument and on exit */
 | |
| /* >     contains the pivot indices from the factorization A = P*L*U */
 | |
| /* >     of the original matrix A. */
 | |
| /* > */
 | |
| /* >     If FACT = 'E', then IPIV is an output argument and on exit */
 | |
| /* >     contains the pivot indices from the factorization A = P*L*U */
 | |
| /* >     of the equilibrated matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] EQUED */
 | |
| /* > \verbatim */
 | |
| /* >          EQUED is CHARACTER*1 */
 | |
| /* >     Specifies the form of equilibration that was done. */
 | |
| /* >       = 'N':  No equilibration (always true if FACT = 'N'). */
 | |
| /* >       = 'R':  Row equilibration, i.e., A has been premultiplied by */
 | |
| /* >               diag(R). */
 | |
| /* >       = 'C':  Column equilibration, i.e., A has been postmultiplied */
 | |
| /* >               by diag(C). */
 | |
| /* >       = 'B':  Both row and column equilibration, i.e., A has been */
 | |
| /* >               replaced by diag(R) * A * diag(C). */
 | |
| /* >     EQUED is an input argument if FACT = 'F'; otherwise, it is an */
 | |
| /* >     output argument. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] R */
 | |
| /* > \verbatim */
 | |
| /* >          R is REAL array, dimension (N) */
 | |
| /* >     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
 | |
| /* >     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
 | |
| /* >     is not accessed.  R is an input argument if FACT = 'F'; */
 | |
| /* >     otherwise, R is an output argument.  If FACT = 'F' and */
 | |
| /* >     EQUED = 'R' or 'B', each element of R must be positive. */
 | |
| /* >     If R is output, each element of R is a power of the radix. */
 | |
| /* >     If R is input, each element of R should be a power of the radix */
 | |
| /* >     to ensure a reliable solution and error estimates. Scaling by */
 | |
| /* >     powers of the radix does not cause rounding errors unless the */
 | |
| /* >     result underflows or overflows. Rounding errors during scaling */
 | |
| /* >     lead to refining with a matrix that is not equivalent to the */
 | |
| /* >     input matrix, producing error estimates that may not be */
 | |
| /* >     reliable. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension (N) */
 | |
| /* >     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
 | |
| /* >     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
 | |
| /* >     is not accessed.  C is an input argument if FACT = 'F'; */
 | |
| /* >     otherwise, C is an output argument.  If FACT = 'F' and */
 | |
| /* >     EQUED = 'C' or 'B', each element of C must be positive. */
 | |
| /* >     If C is output, each element of C is a power of the radix. */
 | |
| /* >     If C is input, each element of C should be a power of the radix */
 | |
| /* >     to ensure a reliable solution and error estimates. Scaling by */
 | |
| /* >     powers of the radix does not cause rounding errors unless the */
 | |
| /* >     result underflows or overflows. Rounding errors during scaling */
 | |
| /* >     lead to refining with a matrix that is not equivalent to the */
 | |
| /* >     input matrix, producing error estimates that may not be */
 | |
| /* >     reliable. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX array, dimension (LDB,NRHS) */
 | |
| /* >     On entry, the N-by-NRHS right hand side matrix B. */
 | |
| /* >     On exit, */
 | |
| /* >     if EQUED = 'N', B is not modified; */
 | |
| /* >     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
 | |
| /* >        diag(R)*B; */
 | |
| /* >     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
 | |
| /* >        overwritten by diag(C)*B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >     The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX array, dimension (LDX,NRHS) */
 | |
| /* >     If INFO = 0, the N-by-NRHS solution matrix X to the original */
 | |
| /* >     system of equations.  Note that A and B are modified on exit */
 | |
| /* >     if EQUED .ne. 'N', and the solution to the equilibrated system is */
 | |
| /* >     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
 | |
| /* >     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >     The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is REAL */
 | |
| /* >     Reciprocal scaled condition number.  This is an estimate of the */
 | |
| /* >     reciprocal Skeel condition number of the matrix A after */
 | |
| /* >     equilibration (if done).  If this is less than the machine */
 | |
| /* >     precision (in particular, if it is zero), the matrix is singular */
 | |
| /* >     to working precision.  Note that the error may still be small even */
 | |
| /* >     if this number is very small and the matrix appears ill- */
 | |
| /* >     conditioned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RPVGRW */
 | |
| /* > \verbatim */
 | |
| /* >          RPVGRW is REAL */
 | |
| /* >     Reciprocal pivot growth.  On exit, this contains the reciprocal */
 | |
| /* >     pivot growth factor norm(A)/norm(U). The "f2cmax absolute element" */
 | |
| /* >     norm is used.  If this is much less than 1, then the stability of */
 | |
| /* >     the LU factorization of the (equilibrated) matrix A could be poor. */
 | |
| /* >     This also means that the solution X, estimated condition numbers, */
 | |
| /* >     and error bounds could be unreliable. If factorization fails with */
 | |
| /* >     0<INFO<=N, then this contains the reciprocal pivot growth factor */
 | |
| /* >     for the leading INFO columns of A.  In CGESVX, this quantity is */
 | |
| /* >     returned in WORK(1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BERR */
 | |
| /* > \verbatim */
 | |
| /* >          BERR is REAL array, dimension (NRHS) */
 | |
| /* >     Componentwise relative backward error.  This is the */
 | |
| /* >     componentwise relative backward error of each solution vector X(j) */
 | |
| /* >     (i.e., the smallest relative change in any element of A or B that */
 | |
| /* >     makes X(j) an exact solution). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N_ERR_BNDS */
 | |
| /* > \verbatim */
 | |
| /* >          N_ERR_BNDS is INTEGER */
 | |
| /* >     Number of error bounds to return for each right hand side */
 | |
| /* >     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
 | |
| /* >     ERR_BNDS_COMP below. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ERR_BNDS_NORM */
 | |
| /* > \verbatim */
 | |
| /* >          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) */
 | |
| /* >     For each right-hand side, this array contains information about */
 | |
| /* >     various error bounds and condition numbers corresponding to the */
 | |
| /* >     normwise relative error, which is defined as follows: */
 | |
| /* > */
 | |
| /* >     Normwise relative error in the ith solution vector: */
 | |
| /* >             max_j (abs(XTRUE(j,i) - X(j,i))) */
 | |
| /* >            ------------------------------ */
 | |
| /* >                  max_j abs(X(j,i)) */
 | |
| /* > */
 | |
| /* >     The array is indexed by the type of error information as described */
 | |
| /* >     below. There currently are up to three pieces of information */
 | |
| /* >     returned. */
 | |
| /* > */
 | |
| /* >     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
 | |
| /* >     right-hand side. */
 | |
| /* > */
 | |
| /* >     The second index in ERR_BNDS_NORM(:,err) contains the following */
 | |
| /* >     three fields: */
 | |
| /* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | |
| /* >              reciprocal condition number is less than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). */
 | |
| /* > */
 | |
| /* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | |
| /* >              almost certainly within a factor of 10 of the true error */
 | |
| /* >              so long as the next entry is greater than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | |
| /* >              be trusted if the previous boolean is true. */
 | |
| /* > */
 | |
| /* >     err = 3  Reciprocal condition number: Estimated normwise */
 | |
| /* >              reciprocal condition number.  Compared with the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | |
| /* >              estimate is "guaranteed". These reciprocal condition */
 | |
| /* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | |
| /* >              appropriately scaled matrix Z. */
 | |
| /* >              Let Z = S*A, where S scales each row by a power of the */
 | |
| /* >              radix so all absolute row sums of Z are approximately 1. */
 | |
| /* > */
 | |
| /* >     See Lapack Working Note 165 for further details and extra */
 | |
| /* >     cautions. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ERR_BNDS_COMP */
 | |
| /* > \verbatim */
 | |
| /* >          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) */
 | |
| /* >     For each right-hand side, this array contains information about */
 | |
| /* >     various error bounds and condition numbers corresponding to the */
 | |
| /* >     componentwise relative error, which is defined as follows: */
 | |
| /* > */
 | |
| /* >     Componentwise relative error in the ith solution vector: */
 | |
| /* >                    abs(XTRUE(j,i) - X(j,i)) */
 | |
| /* >             max_j ---------------------- */
 | |
| /* >                         abs(X(j,i)) */
 | |
| /* > */
 | |
| /* >     The array is indexed by the right-hand side i (on which the */
 | |
| /* >     componentwise relative error depends), and the type of error */
 | |
| /* >     information as described below. There currently are up to three */
 | |
| /* >     pieces of information returned for each right-hand side. If */
 | |
| /* >     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
 | |
| /* >     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most */
 | |
| /* >     the first (:,N_ERR_BNDS) entries are returned. */
 | |
| /* > */
 | |
| /* >     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
 | |
| /* >     right-hand side. */
 | |
| /* > */
 | |
| /* >     The second index in ERR_BNDS_COMP(:,err) contains the following */
 | |
| /* >     three fields: */
 | |
| /* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | |
| /* >              reciprocal condition number is less than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). */
 | |
| /* > */
 | |
| /* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | |
| /* >              almost certainly within a factor of 10 of the true error */
 | |
| /* >              so long as the next entry is greater than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | |
| /* >              be trusted if the previous boolean is true. */
 | |
| /* > */
 | |
| /* >     err = 3  Reciprocal condition number: Estimated componentwise */
 | |
| /* >              reciprocal condition number.  Compared with the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | |
| /* >              estimate is "guaranteed". These reciprocal condition */
 | |
| /* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | |
| /* >              appropriately scaled matrix Z. */
 | |
| /* >              Let Z = S*(A*diag(x)), where x is the solution for the */
 | |
| /* >              current right-hand side and S scales each row of */
 | |
| /* >              A*diag(x) by a power of the radix so all absolute row */
 | |
| /* >              sums of Z are approximately 1. */
 | |
| /* > */
 | |
| /* >     See Lapack Working Note 165 for further details and extra */
 | |
| /* >     cautions. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NPARAMS */
 | |
| /* > \verbatim */
 | |
| /* >          NPARAMS is INTEGER */
 | |
| /* >     Specifies the number of parameters set in PARAMS.  If <= 0, the */
 | |
| /* >     PARAMS array is never referenced and default values are used. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] PARAMS */
 | |
| /* > \verbatim */
 | |
| /* >          PARAMS is REAL array, dimension NPARAMS */
 | |
| /* >     Specifies algorithm parameters.  If an entry is < 0.0, then */
 | |
| /* >     that entry will be filled with default value used for that */
 | |
| /* >     parameter.  Only positions up to NPARAMS are accessed; defaults */
 | |
| /* >     are used for higher-numbered parameters. */
 | |
| /* > */
 | |
| /* >       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
 | |
| /* >            refinement or not. */
 | |
| /* >         Default: 1.0 */
 | |
| /* >            = 0.0:  No refinement is performed, and no error bounds are */
 | |
| /* >                    computed. */
 | |
| /* >            = 1.0:  Use the double-precision refinement algorithm, */
 | |
| /* >                    possibly with doubled-single computations if the */
 | |
| /* >                    compilation environment does not support DOUBLE */
 | |
| /* >                    PRECISION. */
 | |
| /* >              (other values are reserved for future use) */
 | |
| /* > */
 | |
| /* >       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
 | |
| /* >            computations allowed for refinement. */
 | |
| /* >         Default: 10 */
 | |
| /* >         Aggressive: Set to 100 to permit convergence using approximate */
 | |
| /* >                     factorizations or factorizations other than LU. If */
 | |
| /* >                     the factorization uses a technique other than */
 | |
| /* >                     Gaussian elimination, the guarantees in */
 | |
| /* >                     err_bnds_norm and err_bnds_comp may no longer be */
 | |
| /* >                     trustworthy. */
 | |
| /* > */
 | |
| /* >       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
 | |
| /* >            will attempt to find a solution with small componentwise */
 | |
| /* >            relative error in the double-precision algorithm.  Positive */
 | |
| /* >            is true, 0.0 is false. */
 | |
| /* >         Default: 1.0 (attempt componentwise convergence) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is REAL array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >       = 0:  Successful exit. The solution to every right-hand side is */
 | |
| /* >         guaranteed. */
 | |
| /* >       < 0:  If INFO = -i, the i-th argument had an illegal value */
 | |
| /* >       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
 | |
| /* >         has been completed, but the factor U is exactly singular, so */
 | |
| /* >         the solution and error bounds could not be computed. RCOND = 0 */
 | |
| /* >         is returned. */
 | |
| /* >       = N+J: The solution corresponding to the Jth right-hand side is */
 | |
| /* >         not guaranteed. The solutions corresponding to other right- */
 | |
| /* >         hand sides K with K > J may not be guaranteed as well, but */
 | |
| /* >         only the first such right-hand side is reported. If a small */
 | |
| /* >         componentwise error is not requested (PARAMS(3) = 0.0) then */
 | |
| /* >         the Jth right-hand side is the first with a normwise error */
 | |
| /* >         bound that is not guaranteed (the smallest J such */
 | |
| /* >         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
 | |
| /* >         the Jth right-hand side is the first with either a normwise or */
 | |
| /* >         componentwise error bound that is not guaranteed (the smallest */
 | |
| /* >         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
 | |
| /* >         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
 | |
| /* >         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
 | |
| /* >         about all of the right-hand sides check ERR_BNDS_NORM or */
 | |
| /* >         ERR_BNDS_COMP. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date April 2012 */
 | |
| 
 | |
| /* > \ingroup complexGEsolve */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgesvxx_(char *fact, char *trans, integer *n, integer *
 | |
| 	nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *
 | |
| 	ipiv, char *equed, real *r__, real *c__, complex *b, integer *ldb, 
 | |
| 	complex *x, integer *ldx, real *rcond, real *rpvgrw, real *berr, 
 | |
| 	integer *n_err_bnds__, real *err_bnds_norm__, real *err_bnds_comp__, 
 | |
| 	integer *nparams, real *params, complex *work, real *rwork, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
 | |
| 	    x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
 | |
| 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real amax;
 | |
|     extern real cla_gerpvgrw_(integer *, integer *, complex *, integer *, 
 | |
| 	    complex *, integer *);
 | |
|     integer j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     real rcmin, rcmax;
 | |
|     logical equil;
 | |
|     extern /* Subroutine */ void claqge_(integer *, integer *, complex *, 
 | |
| 	    integer *, real *, real *, real *, real *, real *, char *)
 | |
| 	    ;
 | |
|     real colcnd;
 | |
|     extern real slamch_(char *);
 | |
|     logical nofact;
 | |
|     extern /* Subroutine */ void cgetrf_(integer *, integer *, complex *, 
 | |
| 	    integer *, integer *, integer *), clacpy_(char *, integer *, 
 | |
| 	    integer *, complex *, integer *, complex *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     real bignum;
 | |
|     integer infequ;
 | |
|     logical colequ;
 | |
|     extern /* Subroutine */ void cgetrs_(char *, integer *, integer *, complex 
 | |
| 	    *, integer *, integer *, complex *, integer *, integer *);
 | |
|     real rowcnd;
 | |
|     logical notran;
 | |
|     real smlnum;
 | |
|     logical rowequ;
 | |
|     extern /* Subroutine */ void clascl2_(integer *, integer *, real *, 
 | |
| 	    complex *, integer *), cgeequb_(integer *, integer *, complex *, 
 | |
| 	    integer *, real *, real *, real *, real *, real *, integer *), 
 | |
| 	    cgerfsx_(char *, char *, integer *, integer *, complex *, integer 
 | |
| 	    *, complex *, integer *, integer *, real *, real *, complex *, 
 | |
| 	    integer *, complex *, integer *, real *, real *, integer *, real *
 | |
| 	    , real *, integer *, real *, complex *, real *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     April 2012 */
 | |
| 
 | |
| 
 | |
| /*  ================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     err_bnds_comp_dim1 = *nrhs;
 | |
|     err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
 | |
|     err_bnds_comp__ -= err_bnds_comp_offset;
 | |
|     err_bnds_norm_dim1 = *nrhs;
 | |
|     err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
 | |
|     err_bnds_norm__ -= err_bnds_norm_offset;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     af_dim1 = *ldaf;
 | |
|     af_offset = 1 + af_dim1 * 1;
 | |
|     af -= af_offset;
 | |
|     --ipiv;
 | |
|     --r__;
 | |
|     --c__;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --berr;
 | |
|     --params;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     nofact = lsame_(fact, "N");
 | |
|     equil = lsame_(fact, "E");
 | |
|     notran = lsame_(trans, "N");
 | |
|     smlnum = slamch_("Safe minimum");
 | |
|     bignum = 1.f / smlnum;
 | |
|     if (nofact || equil) {
 | |
| 	*(unsigned char *)equed = 'N';
 | |
| 	rowequ = FALSE_;
 | |
| 	colequ = FALSE_;
 | |
|     } else {
 | |
| 	rowequ = lsame_(equed, "R") || lsame_(equed, 
 | |
| 		"B");
 | |
| 	colequ = lsame_(equed, "C") || lsame_(equed, 
 | |
| 		"B");
 | |
|     }
 | |
| 
 | |
| /*     Default is failure.  If an input parameter is wrong or */
 | |
| /*     factorization fails, make everything look horrible.  Only the */
 | |
| /*     pivot growth is set here, the rest is initialized in CGERFSX. */
 | |
| 
 | |
|     *rpvgrw = 0.f;
 | |
| 
 | |
| /*     Test the input parameters.  PARAMS is not tested until CGERFSX. */
 | |
| 
 | |
|     if (! nofact && ! equil && ! lsame_(fact, "F")) {
 | |
| 	*info = -1;
 | |
|     } else if (! notran && ! lsame_(trans, "T") && ! 
 | |
| 	    lsame_(trans, "C")) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldaf < f2cmax(1,*n)) {
 | |
| 	*info = -8;
 | |
|     } else if (lsame_(fact, "F") && ! (rowequ || colequ 
 | |
| 	    || lsame_(equed, "N"))) {
 | |
| 	*info = -10;
 | |
|     } else {
 | |
| 	if (rowequ) {
 | |
| 	    rcmin = bignum;
 | |
| 	    rcmax = 0.f;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		r__1 = rcmin, r__2 = r__[j];
 | |
| 		rcmin = f2cmin(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 		r__1 = rcmax, r__2 = r__[j];
 | |
| 		rcmax = f2cmax(r__1,r__2);
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	    if (rcmin <= 0.f) {
 | |
| 		*info = -11;
 | |
| 	    } else if (*n > 0) {
 | |
| 		rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
 | |
| 	    } else {
 | |
| 		rowcnd = 1.f;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (colequ && *info == 0) {
 | |
| 	    rcmin = bignum;
 | |
| 	    rcmax = 0.f;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		r__1 = rcmin, r__2 = c__[j];
 | |
| 		rcmin = f2cmin(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 		r__1 = rcmax, r__2 = c__[j];
 | |
| 		rcmax = f2cmax(r__1,r__2);
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	    if (rcmin <= 0.f) {
 | |
| 		*info = -12;
 | |
| 	    } else if (*n > 0) {
 | |
| 		colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
 | |
| 	    } else {
 | |
| 		colcnd = 1.f;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*info == 0) {
 | |
| 	    if (*ldb < f2cmax(1,*n)) {
 | |
| 		*info = -14;
 | |
| 	    } else if (*ldx < f2cmax(1,*n)) {
 | |
| 		*info = -16;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CGESVXX", &i__1, (ftnlen)7);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (equil) {
 | |
| 
 | |
| /*     Compute row and column scalings to equilibrate the matrix A. */
 | |
| 
 | |
| 	cgeequb_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, 
 | |
| 		&amax, &infequ);
 | |
| 	if (infequ == 0) {
 | |
| 
 | |
| /*     Equilibrate the matrix. */
 | |
| 
 | |
| 	    claqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
 | |
| 		    colcnd, &amax, equed);
 | |
| 	    rowequ = lsame_(equed, "R") || lsame_(equed,
 | |
| 		     "B");
 | |
| 	    colequ = lsame_(equed, "C") || lsame_(equed,
 | |
| 		     "B");
 | |
| 	}
 | |
| 
 | |
| /*     If the scaling factors are not applied, set them to 1.0. */
 | |
| 
 | |
| 	if (! rowequ) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		r__[j] = 1.f;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (! colequ) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		c__[j] = 1.f;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale the right-hand side. */
 | |
| 
 | |
|     if (notran) {
 | |
| 	if (rowequ) {
 | |
| 	    clascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
 | |
| 	}
 | |
|     } else {
 | |
| 	if (colequ) {
 | |
| 	    clascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (nofact || equil) {
 | |
| 
 | |
| /*        Compute the LU factorization of A. */
 | |
| 
 | |
| 	clacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
 | |
| 	cgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);
 | |
| 
 | |
| /*        Return if INFO is non-zero. */
 | |
| 
 | |
| 	if (*info > 0) {
 | |
| 
 | |
| /*           Pivot in column INFO is exactly 0 */
 | |
| /*           Compute the reciprocal pivot growth factor of the */
 | |
| /*           leading rank-deficient INFO columns of A. */
 | |
| 
 | |
| 	    *rpvgrw = cla_gerpvgrw_(n, info, &a[a_offset], lda, &af[
 | |
| 		    af_offset], ldaf);
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the reciprocal pivot growth factor RPVGRW. */
 | |
| 
 | |
|     *rpvgrw = cla_gerpvgrw_(n, n, &a[a_offset], lda, &af[af_offset], ldaf);
 | |
| 
 | |
| /*     Compute the solution matrix X. */
 | |
| 
 | |
|     clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 | |
|     cgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
 | |
| 	     info);
 | |
| 
 | |
| /*     Use iterative refinement to improve the computed solution and */
 | |
| /*     compute error bounds and backward error estimates for it. */
 | |
| 
 | |
|     cgerfsx_(trans, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &
 | |
| 	    ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, &x[x_offset], ldx, 
 | |
| 	    rcond, &berr[1], n_err_bnds__, &err_bnds_norm__[
 | |
| 	    err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset], 
 | |
| 	    nparams, ¶ms[1], &work[1], &rwork[1], info);
 | |
| 
 | |
| /*     Scale solutions. */
 | |
| 
 | |
|     if (colequ && notran) {
 | |
| 	clascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
 | |
|     } else if (rowequ && ! notran) {
 | |
| 	clascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CGESVXX */
 | |
| 
 | |
| } /* cgesvxx_ */
 | |
| 
 |