3704 lines
		
	
	
		
			139 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			3704 lines
		
	
	
		
			139 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> CGESVD computes the singular value decomposition (SVD) for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGESVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
 | |
| *                          WORK, LWORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBU, JOBVT
 | |
| *       INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), S( * )
 | |
| *       COMPLEX            A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGESVD computes the singular value decomposition (SVD) of a complex
 | |
| *> M-by-N matrix A, optionally computing the left and/or right singular
 | |
| *> vectors. The SVD is written
 | |
| *>
 | |
| *>      A = U * SIGMA * conjugate-transpose(V)
 | |
| *>
 | |
| *> where SIGMA is an M-by-N matrix which is zero except for its
 | |
| *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
 | |
| *> V is an N-by-N unitary matrix.  The diagonal elements of SIGMA
 | |
| *> are the singular values of A; they are real and non-negative, and
 | |
| *> are returned in descending order.  The first min(m,n) columns of
 | |
| *> U and V are the left and right singular vectors of A.
 | |
| *>
 | |
| *> Note that the routine returns V**H, not V.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU
 | |
| *> \verbatim
 | |
| *>          JOBU is CHARACTER*1
 | |
| *>          Specifies options for computing all or part of the matrix U:
 | |
| *>          = 'A':  all M columns of U are returned in array U:
 | |
| *>          = 'S':  the first min(m,n) columns of U (the left singular
 | |
| *>                  vectors) are returned in the array U;
 | |
| *>          = 'O':  the first min(m,n) columns of U (the left singular
 | |
| *>                  vectors) are overwritten on the array A;
 | |
| *>          = 'N':  no columns of U (no left singular vectors) are
 | |
| *>                  computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVT
 | |
| *> \verbatim
 | |
| *>          JOBVT is CHARACTER*1
 | |
| *>          Specifies options for computing all or part of the matrix
 | |
| *>          V**H:
 | |
| *>          = 'A':  all N rows of V**H are returned in the array VT;
 | |
| *>          = 'S':  the first min(m,n) rows of V**H (the right singular
 | |
| *>                  vectors) are returned in the array VT;
 | |
| *>          = 'O':  the first min(m,n) rows of V**H (the right singular
 | |
| *>                  vectors) are overwritten on the array A;
 | |
| *>          = 'N':  no rows of V**H (no right singular vectors) are
 | |
| *>                  computed.
 | |
| *>
 | |
| *>          JOBVT and JOBU cannot both be 'O'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the input matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the input matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit,
 | |
| *>          if JOBU = 'O',  A is overwritten with the first min(m,n)
 | |
| *>                          columns of U (the left singular vectors,
 | |
| *>                          stored columnwise);
 | |
| *>          if JOBVT = 'O', A is overwritten with the first min(m,n)
 | |
| *>                          rows of V**H (the right singular vectors,
 | |
| *>                          stored rowwise);
 | |
| *>          if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
 | |
| *>                          are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (min(M,N))
 | |
| *>          The singular values of A, sorted so that S(i) >= S(i+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU,UCOL)
 | |
| *>          (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
 | |
| *>          If JOBU = 'A', U contains the M-by-M unitary matrix U;
 | |
| *>          if JOBU = 'S', U contains the first min(m,n) columns of U
 | |
| *>          (the left singular vectors, stored columnwise);
 | |
| *>          if JOBU = 'N' or 'O', U is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= 1; if
 | |
| *>          JOBU = 'S' or 'A', LDU >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VT
 | |
| *> \verbatim
 | |
| *>          VT is COMPLEX array, dimension (LDVT,N)
 | |
| *>          If JOBVT = 'A', VT contains the N-by-N unitary matrix
 | |
| *>          V**H;
 | |
| *>          if JOBVT = 'S', VT contains the first min(m,n) rows of
 | |
| *>          V**H (the right singular vectors, stored rowwise);
 | |
| *>          if JOBVT = 'N' or 'O', VT is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>          The leading dimension of the array VT.  LDVT >= 1; if
 | |
| *>          JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          LWORK >=  MAX(1,2*MIN(M,N)+MAX(M,N)).
 | |
| *>          For good performance, LWORK should generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (5*min(M,N))
 | |
| *>          On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the
 | |
| *>          unconverged superdiagonal elements of an upper bidiagonal
 | |
| *>          matrix B whose diagonal is in S (not necessarily sorted).
 | |
| *>          B satisfies A = U * B * VT, so it has the same singular
 | |
| *>          values as A, and singular vectors related by U and VT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if CBDSQR did not converge, INFO specifies how many
 | |
| *>                superdiagonals of an intermediate bidiagonal form B
 | |
| *>                did not converge to zero. See the description of RWORK
 | |
| *>                above for details.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexGEsing
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
 | |
|      $                   WORK, LWORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBU, JOBVT
 | |
|       INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), S( * )
 | |
|       COMPLEX            A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
 | |
|      $                   CONE = ( 1.0E0, 0.0E0 ) )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
 | |
|      $                   WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
 | |
|       INTEGER            BLK, CHUNK, I, IE, IERR, IR, IRWORK, ISCL,
 | |
|      $                   ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
 | |
|      $                   MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
 | |
|      $                   NRVT, WRKBL
 | |
|       INTEGER            LWORK_CGEQRF, LWORK_CUNGQR_N, LWORK_CUNGQR_M,
 | |
|      $                   LWORK_CGEBRD, LWORK_CUNGBR_P, LWORK_CUNGBR_Q,
 | |
|      $                   LWORK_CGELQF, LWORK_CUNGLQ_N, LWORK_CUNGLQ_M
 | |
|       REAL               ANRM, BIGNUM, EPS, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               DUM( 1 )
 | |
|       COMPLEX            CDUM( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CBDSQR, CGEBRD, CGELQF, CGEMM, CGEQRF, CLACPY,
 | |
|      $                   CLASCL, CLASET, CUNGBR, CUNGLQ, CUNGQR, CUNMBR,
 | |
|      $                   SLASCL, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       EXTERNAL           LSAME, ILAENV, CLANGE, SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       MINMN = MIN( M, N )
 | |
|       WNTUA = LSAME( JOBU, 'A' )
 | |
|       WNTUS = LSAME( JOBU, 'S' )
 | |
|       WNTUAS = WNTUA .OR. WNTUS
 | |
|       WNTUO = LSAME( JOBU, 'O' )
 | |
|       WNTUN = LSAME( JOBU, 'N' )
 | |
|       WNTVA = LSAME( JOBVT, 'A' )
 | |
|       WNTVS = LSAME( JOBVT, 'S' )
 | |
|       WNTVAS = WNTVA .OR. WNTVS
 | |
|       WNTVO = LSAME( JOBVT, 'O' )
 | |
|       WNTVN = LSAME( JOBVT, 'N' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
 | |
|      $         ( WNTVO .AND. WNTUO ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
 | |
|      $         ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       CWorkspace refers to complex workspace, and RWorkspace to
 | |
| *       real workspace. NB refers to the optimal block size for the
 | |
| *       immediately following subroutine, as returned by ILAENV.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          MINWRK = 1
 | |
|          MAXWRK = 1
 | |
|          IF( M.GE.N .AND. MINMN.GT.0 ) THEN
 | |
| *
 | |
| *           Space needed for ZBDSQR is BDSPAC = 5*N
 | |
| *
 | |
|             MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
 | |
| *           Compute space needed for CGEQRF
 | |
|             CALL CGEQRF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CGEQRF = INT( CDUM(1) )
 | |
| *           Compute space needed for CUNGQR
 | |
|             CALL CUNGQR( M, N, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGQR_N = INT( CDUM(1) )
 | |
|             CALL CUNGQR( M, M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGQR_M = INT( CDUM(1) )
 | |
| *           Compute space needed for CGEBRD
 | |
|             CALL CGEBRD( N, N, A, LDA, S, DUM(1), CDUM(1),
 | |
|      $                   CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CGEBRD = INT( CDUM(1) )
 | |
| *           Compute space needed for CUNGBR
 | |
|             CALL CUNGBR( 'P', N, N, N, A, LDA, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGBR_P = INT( CDUM(1) )
 | |
|             CALL CUNGBR( 'Q', N, N, N, A, LDA, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGBR_Q = INT( CDUM(1) )
 | |
| *
 | |
|             MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
 | |
|             IF( M.GE.MNTHR ) THEN
 | |
|                IF( WNTUN ) THEN
 | |
| *
 | |
| *                 Path 1 (M much larger than N, JOBU='N')
 | |
| *
 | |
|                   MAXWRK = N + LWORK_CGEQRF
 | |
|                   MAXWRK = MAX( MAXWRK, 2*N+LWORK_CGEBRD )
 | |
|                   IF( WNTVO .OR. WNTVAS )
 | |
|      $               MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_P )
 | |
|                   MINWRK = 3*N
 | |
|                ELSE IF( WNTUO .AND. WNTVN ) THEN
 | |
| *
 | |
| *                 Path 2 (M much larger than N, JOBU='O', JOBVT='N')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUO .AND. WNTVAS ) THEN
 | |
| *
 | |
| *                 Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
 | |
| *                 'A')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUS .AND. WNTVN ) THEN
 | |
| *
 | |
| *                 Path 4 (M much larger than N, JOBU='S', JOBVT='N')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = N*N + WRKBL
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUS .AND. WNTVO ) THEN
 | |
| *
 | |
| *                 Path 5 (M much larger than N, JOBU='S', JOBVT='O')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = 2*N*N + WRKBL
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUS .AND. WNTVAS ) THEN
 | |
| *
 | |
| *                 Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
 | |
| *                 'A')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = N*N + WRKBL
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUA .AND. WNTVN ) THEN
 | |
| *
 | |
| *                 Path 7 (M much larger than N, JOBU='A', JOBVT='N')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = N*N + WRKBL
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUA .AND. WNTVO ) THEN
 | |
| *
 | |
| *                 Path 8 (M much larger than N, JOBU='A', JOBVT='O')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = 2*N*N + WRKBL
 | |
|                   MINWRK = 2*N + M
 | |
|                ELSE IF( WNTUA .AND. WNTVAS ) THEN
 | |
| *
 | |
| *                 Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
 | |
| *                 'A')
 | |
| *
 | |
|                   WRKBL = N + LWORK_CGEQRF
 | |
|                   WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
 | |
|                   WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = N*N + WRKBL
 | |
|                   MINWRK = 2*N + M
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Path 10 (M at least N, but not much larger)
 | |
| *
 | |
|                CALL CGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
 | |
|      $                   CDUM(1), CDUM(1), -1, IERR )
 | |
|                LWORK_CGEBRD = INT( CDUM(1) )
 | |
|                MAXWRK = 2*N + LWORK_CGEBRD
 | |
|                IF( WNTUS .OR. WNTUO ) THEN
 | |
|                   CALL CUNGBR( 'Q', M, N, N, A, LDA, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|                   LWORK_CUNGBR_Q = INT( CDUM(1) )
 | |
|                   MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_Q )
 | |
|                END IF
 | |
|                IF( WNTUA ) THEN
 | |
|                   CALL CUNGBR( 'Q', M, M, N, A, LDA, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|                   LWORK_CUNGBR_Q = INT( CDUM(1) )
 | |
|                   MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_Q )
 | |
|                END IF
 | |
|                IF( .NOT.WNTVN ) THEN
 | |
|                   MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_P )
 | |
|                END IF
 | |
|                MINWRK = 2*N + M
 | |
|             END IF
 | |
|          ELSE IF( MINMN.GT.0 ) THEN
 | |
| *
 | |
| *           Space needed for CBDSQR is BDSPAC = 5*M
 | |
| *
 | |
|             MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
 | |
| *           Compute space needed for CGELQF
 | |
|             CALL CGELQF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CGELQF = INT( CDUM(1) )
 | |
| *           Compute space needed for CUNGLQ
 | |
|             CALL CUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1), -1,
 | |
|      $                   IERR )
 | |
|             LWORK_CUNGLQ_N = INT( CDUM(1) )
 | |
|             CALL CUNGLQ( M, N, M, A, LDA, CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGLQ_M = INT( CDUM(1) )
 | |
| *           Compute space needed for CGEBRD
 | |
|             CALL CGEBRD( M, M, A, LDA, S, DUM(1), CDUM(1),
 | |
|      $                   CDUM(1), CDUM(1), -1, IERR )
 | |
|             LWORK_CGEBRD = INT( CDUM(1) )
 | |
| *            Compute space needed for CUNGBR P
 | |
|             CALL CUNGBR( 'P', M, M, M, A, N, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGBR_P = INT( CDUM(1) )
 | |
| *           Compute space needed for CUNGBR Q
 | |
|             CALL CUNGBR( 'Q', M, M, M, A, N, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|             LWORK_CUNGBR_Q = INT( CDUM(1) )
 | |
|             IF( N.GE.MNTHR ) THEN
 | |
|                IF( WNTVN ) THEN
 | |
| *
 | |
| *                 Path 1t(N much larger than M, JOBVT='N')
 | |
| *
 | |
|                   MAXWRK = M + LWORK_CGELQF
 | |
|                   MAXWRK = MAX( MAXWRK, 2*M+LWORK_CGEBRD )
 | |
|                   IF( WNTUO .OR. WNTUAS )
 | |
|      $               MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_Q )
 | |
|                   MINWRK = 3*M
 | |
|                ELSE IF( WNTVO .AND. WNTUN ) THEN
 | |
| *
 | |
| *                 Path 2t(N much larger than M, JOBU='N', JOBVT='O')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVO .AND. WNTUAS ) THEN
 | |
| *
 | |
| *                 Path 3t(N much larger than M, JOBU='S' or 'A',
 | |
| *                 JOBVT='O')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVS .AND. WNTUN ) THEN
 | |
| *
 | |
| *                 Path 4t(N much larger than M, JOBU='N', JOBVT='S')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = M*M + WRKBL
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVS .AND. WNTUO ) THEN
 | |
| *
 | |
| *                 Path 5t(N much larger than M, JOBU='O', JOBVT='S')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = 2*M*M + WRKBL
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVS .AND. WNTUAS ) THEN
 | |
| *
 | |
| *                 Path 6t(N much larger than M, JOBU='S' or 'A',
 | |
| *                 JOBVT='S')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = M*M + WRKBL
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVA .AND. WNTUN ) THEN
 | |
| *
 | |
| *                 Path 7t(N much larger than M, JOBU='N', JOBVT='A')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   MAXWRK = M*M + WRKBL
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVA .AND. WNTUO ) THEN
 | |
| *
 | |
| *                 Path 8t(N much larger than M, JOBU='O', JOBVT='A')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = 2*M*M + WRKBL
 | |
|                   MINWRK = 2*M + N
 | |
|                ELSE IF( WNTVA .AND. WNTUAS ) THEN
 | |
| *
 | |
| *                 Path 9t(N much larger than M, JOBU='S' or 'A',
 | |
| *                 JOBVT='A')
 | |
| *
 | |
|                   WRKBL = M + LWORK_CGELQF
 | |
|                   WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
 | |
|                   WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
 | |
|                   MAXWRK = M*M + WRKBL
 | |
|                   MINWRK = 2*M + N
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Path 10t(N greater than M, but not much larger)
 | |
| *
 | |
|                CALL CGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
 | |
|      $                   CDUM(1), CDUM(1), -1, IERR )
 | |
|                LWORK_CGEBRD = INT( CDUM(1) )
 | |
|                MAXWRK = 2*M + LWORK_CGEBRD
 | |
|                IF( WNTVS .OR. WNTVO ) THEN
 | |
| *                Compute space needed for CUNGBR P
 | |
|                  CALL CUNGBR( 'P', M, N, M, A, N, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|                  LWORK_CUNGBR_P = INT( CDUM(1) )
 | |
|                  MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_P )
 | |
|                END IF
 | |
|                IF( WNTVA ) THEN
 | |
|                  CALL CUNGBR( 'P', N,  N, M, A, N, CDUM(1),
 | |
|      $                   CDUM(1), -1, IERR )
 | |
|                  LWORK_CUNGBR_P = INT( CDUM(1) )
 | |
|                  MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_P )
 | |
|                END IF
 | |
|                IF( .NOT.WNTUN ) THEN
 | |
|                   MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_Q )
 | |
|                END IF
 | |
|                MINWRK = 2*M + N
 | |
|             END IF
 | |
|          END IF
 | |
|          MAXWRK = MAX( MINWRK, MAXWRK )
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -13
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGESVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = CLANGE( 'M', M, N, A, LDA, DUM )
 | |
|       ISCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ISCL = 1
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ISCL = 1
 | |
|          CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        A has at least as many rows as columns. If A has sufficiently
 | |
| *        more rows than columns, first reduce using the QR
 | |
| *        decomposition (if sufficient workspace available)
 | |
| *
 | |
|          IF( M.GE.MNTHR ) THEN
 | |
| *
 | |
|             IF( WNTUN ) THEN
 | |
| *
 | |
| *              Path 1 (M much larger than N, JOBU='N')
 | |
| *              No left singular vectors to be computed
 | |
| *
 | |
|                ITAU = 1
 | |
|                IWORK = ITAU + N
 | |
| *
 | |
| *              Compute A=Q*R
 | |
| *              (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *              (RWorkspace: need 0)
 | |
| *
 | |
|                CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | |
|      $                      LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *              Zero out below R
 | |
| *
 | |
|                IF( N .GT. 1 ) THEN
 | |
|                   CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
 | |
|      $                         LDA )
 | |
|                END IF
 | |
|                IE = 1
 | |
|                ITAUQ = 1
 | |
|                ITAUP = ITAUQ + N
 | |
|                IWORK = ITAUP + N
 | |
| *
 | |
| *              Bidiagonalize R in A
 | |
| *              (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *              (RWorkspace: need N)
 | |
| *
 | |
|                CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                      WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | |
|      $                      IERR )
 | |
|                NCVT = 0
 | |
|                IF( WNTVO .OR. WNTVAS ) THEN
 | |
| *
 | |
| *                 If right singular vectors desired, generate P'.
 | |
| *                 (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   NCVT = N
 | |
|                END IF
 | |
|                IRWORK = IE + N
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, computing right
 | |
| *              singular vectors of A in A if desired
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'U', N, NCVT, 0, 0, S, RWORK( IE ), A, LDA,
 | |
|      $                      CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *              If right singular vectors desired in VT, copy them there
 | |
| *
 | |
|                IF( WNTVAS )
 | |
|      $            CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
 | |
| *
 | |
|             ELSE IF( WNTUO .AND. WNTVN ) THEN
 | |
| *
 | |
| *              Path 2 (M much larger than N, JOBU='O', JOBVT='N')
 | |
| *              N left singular vectors to be overwritten on A and
 | |
| *              no right singular vectors to be computed
 | |
| *
 | |
|                IF( LWORK.GE.N*N+3*N ) THEN
 | |
| *
 | |
| *                 Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                   IR = 1
 | |
|                   IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N, WORK(IR) is LDA by N
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      LDWRKR = LDA
 | |
|                   ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N, WORK(IR) is N by N
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      LDWRKR = N
 | |
|                   ELSE
 | |
| *
 | |
| *                    WORK(IU) is LDWRKU by N, WORK(IR) is N by N
 | |
| *
 | |
|                      LDWRKU = ( LWORK-N*N ) / N
 | |
|                      LDWRKR = N
 | |
|                   END IF
 | |
|                   ITAU = IR + LDWRKR*N
 | |
|                   IWORK = ITAU + N
 | |
| *
 | |
| *                 Compute A=Q*R
 | |
| *                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Copy R to WORK(IR) and zero out below it
 | |
| *
 | |
|                   CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
 | |
|                   CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                         WORK( IR+1 ), LDWRKR )
 | |
| *
 | |
| *                 Generate Q in A
 | |
| *                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IE = 1
 | |
|                   ITAUQ = ITAU
 | |
|                   ITAUP = ITAUQ + N
 | |
|                   IWORK = ITAUP + N
 | |
| *
 | |
| *                 Bidiagonalize R in WORK(IR)
 | |
| *                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
 | |
| *                 (RWorkspace: need N)
 | |
| *
 | |
|                   CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate left vectors bidiagonalizing R
 | |
| *                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
 | |
| *                 (RWorkspace: need 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                         WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                         LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + N
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing left
 | |
| *                 singular vectors of R in WORK(IR)
 | |
| *                 (CWorkspace: need N*N)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, 1,
 | |
|      $                         WORK( IR ), LDWRKR, CDUM, 1,
 | |
|      $                         RWORK( IRWORK ), INFO )
 | |
|                   IU = ITAUQ
 | |
| *
 | |
| *                 Multiply Q in A by left singular vectors of R in
 | |
| *                 WORK(IR), storing result in WORK(IU) and copying to A
 | |
| *                 (CWorkspace: need N*N+N, prefer N*N+M*N)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   DO 10 I = 1, M, LDWRKU
 | |
|                      CHUNK = MIN( M-I+1, LDWRKU )
 | |
|                      CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
 | |
|      $                           LDA, WORK( IR ), LDWRKR, CZERO,
 | |
|      $                           WORK( IU ), LDWRKU )
 | |
|                      CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
 | |
|      $                            A( I, 1 ), LDA )
 | |
|    10             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                   IE = 1
 | |
|                   ITAUQ = 1
 | |
|                   ITAUP = ITAUQ + N
 | |
|                   IWORK = ITAUP + N
 | |
| *
 | |
| *                 Bidiagonalize A
 | |
| *                 (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
 | |
| *                 (RWorkspace: N)
 | |
| *
 | |
|                   CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate left vectors bidiagonalizing A
 | |
| *                 (CWorkspace: need 3*N, prefer 2*N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + N
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing left
 | |
| *                 singular vectors of A in A
 | |
| *                 (CWorkspace: need 0)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, 1,
 | |
|      $                         A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTUO .AND. WNTVAS ) THEN
 | |
| *
 | |
| *              Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
 | |
| *              N left singular vectors to be overwritten on A and
 | |
| *              N right singular vectors to be computed in VT
 | |
| *
 | |
|                IF( LWORK.GE.N*N+3*N ) THEN
 | |
| *
 | |
| *                 Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                   IR = 1
 | |
|                   IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N and WORK(IR) is LDA by N
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      LDWRKR = LDA
 | |
|                   ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N and WORK(IR) is N by N
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      LDWRKR = N
 | |
|                   ELSE
 | |
| *
 | |
| *                    WORK(IU) is LDWRKU by N and WORK(IR) is N by N
 | |
| *
 | |
|                      LDWRKU = ( LWORK-N*N ) / N
 | |
|                      LDWRKR = N
 | |
|                   END IF
 | |
|                   ITAU = IR + LDWRKR*N
 | |
|                   IWORK = ITAU + N
 | |
| *
 | |
| *                 Compute A=Q*R
 | |
| *                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Copy R to VT, zeroing out below it
 | |
| *
 | |
|                   CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
 | |
|                   IF( N.GT.1 )
 | |
|      $               CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            VT( 2, 1 ), LDVT )
 | |
| *
 | |
| *                 Generate Q in A
 | |
| *                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IE = 1
 | |
|                   ITAUQ = ITAU
 | |
|                   ITAUP = ITAUQ + N
 | |
|                   IWORK = ITAUP + N
 | |
| *
 | |
| *                 Bidiagonalize R in VT, copying result to WORK(IR)
 | |
| *                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
 | |
| *                 (RWorkspace: need N)
 | |
| *
 | |
|                   CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   CALL CLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
 | |
| *
 | |
| *                 Generate left vectors bidiagonalizing R in WORK(IR)
 | |
| *                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                         WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                         LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate right vectors bidiagonalizing R in VT
 | |
| *                 (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + N
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing left
 | |
| *                 singular vectors of R in WORK(IR) and computing right
 | |
| *                 singular vectors of R in VT
 | |
| *                 (CWorkspace: need N*N)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
 | |
|      $                         LDVT, WORK( IR ), LDWRKR, CDUM, 1,
 | |
|      $                         RWORK( IRWORK ), INFO )
 | |
|                   IU = ITAUQ
 | |
| *
 | |
| *                 Multiply Q in A by left singular vectors of R in
 | |
| *                 WORK(IR), storing result in WORK(IU) and copying to A
 | |
| *                 (CWorkspace: need N*N+N, prefer N*N+M*N)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   DO 20 I = 1, M, LDWRKU
 | |
|                      CHUNK = MIN( M-I+1, LDWRKU )
 | |
|                      CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
 | |
|      $                           LDA, WORK( IR ), LDWRKR, CZERO,
 | |
|      $                           WORK( IU ), LDWRKU )
 | |
|                      CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
 | |
|      $                            A( I, 1 ), LDA )
 | |
|    20             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                   ITAU = 1
 | |
|                   IWORK = ITAU + N
 | |
| *
 | |
| *                 Compute A=Q*R
 | |
| *                 (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Copy R to VT, zeroing out below it
 | |
| *
 | |
|                   CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
 | |
|                   IF( N.GT.1 )
 | |
|      $               CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            VT( 2, 1 ), LDVT )
 | |
| *
 | |
| *                 Generate Q in A
 | |
| *                 (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IE = 1
 | |
|                   ITAUQ = ITAU
 | |
|                   ITAUP = ITAUQ + N
 | |
|                   IWORK = ITAUP + N
 | |
| *
 | |
| *                 Bidiagonalize R in VT
 | |
| *                 (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                 (RWorkspace: N)
 | |
| *
 | |
|                   CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Multiply Q in A by left vectors bidiagonalizing R
 | |
| *                 (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
 | |
|      $                         WORK( ITAUQ ), A, LDA, WORK( IWORK ),
 | |
|      $                         LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate right vectors bidiagonalizing R in VT
 | |
| *                 (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + N
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing left
 | |
| *                 singular vectors of A in A and computing right
 | |
| *                 singular vectors of A in VT
 | |
| *                 (CWorkspace: 0)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                         LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                         INFO )
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTUS ) THEN
 | |
| *
 | |
|                IF( WNTVN ) THEN
 | |
| *
 | |
| *                 Path 4 (M much larger than N, JOBU='S', JOBVT='N')
 | |
| *                 N left singular vectors to be computed in U and
 | |
| *                 no right singular vectors to be computed
 | |
| *
 | |
|                   IF( LWORK.GE.N*N+3*N ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IR = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*N ) THEN
 | |
| *
 | |
| *                       WORK(IR) is LDA by N
 | |
| *
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IR) is N by N
 | |
| *
 | |
|                         LDWRKR = N
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*N
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R
 | |
| *                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R to WORK(IR), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ),
 | |
|      $                            LDWRKR )
 | |
|                      CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            WORK( IR+1 ), LDWRKR )
 | |
| *
 | |
| *                    Generate Q in A
 | |
| *                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in WORK(IR)
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left vectors bidiagonalizing R in WORK(IR)
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of R in WORK(IR)
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
 | |
|      $                            1, WORK( IR ), LDWRKR, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply Q in A by left singular vectors of R in
 | |
| *                    WORK(IR), storing result in U
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
 | |
|      $                           WORK( IR ), LDWRKR, CZERO, U, LDU )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Zero out below R in A
 | |
| *
 | |
|                      IF( N .GT. 1 ) THEN
 | |
|                         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                               A( 2, 1 ), LDA )
 | |
|                      END IF
 | |
| *
 | |
| *                    Bidiagonalize R in A
 | |
| *                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply Q in U by left vectors bidiagonalizing R
 | |
| *                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
 | |
|      $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
 | |
|      $                            1, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTVO ) THEN
 | |
| *
 | |
| *                 Path 5 (M much larger than N, JOBU='S', JOBVT='O')
 | |
| *                 N left singular vectors to be computed in U and
 | |
| *                 N right singular vectors to be overwritten on A
 | |
| *
 | |
|                   IF( LWORK.GE.2*N*N+3*N ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N and WORK(IR) is LDA by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*N
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N and WORK(IR) is N by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*N
 | |
|                         LDWRKR = N
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is N by N and WORK(IR) is N by N
 | |
| *
 | |
|                         LDWRKU = N
 | |
|                         IR = IU + LDWRKU*N
 | |
|                         LDWRKR = N
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*N
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R
 | |
| *                    (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R to WORK(IU), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+1 ), LDWRKU )
 | |
| *
 | |
| *                    Generate Q in A
 | |
| *                    (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in WORK(IU), copying result to
 | |
| *                    WORK(IR)
 | |
| *                    (CWorkspace: need   2*N*N+3*N,
 | |
| *                                 prefer 2*N*N+2*N+2*N*NB)
 | |
| *                    (RWorkspace: need   N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( IR ), LDWRKR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IR)
 | |
| *                    (CWorkspace: need   2*N*N+3*N-1,
 | |
| *                                 prefer 2*N*N+2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of R in WORK(IU) and computing
 | |
| *                    right singular vectors of R in WORK(IR)
 | |
| *                    (CWorkspace: need 2*N*N)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IR ), LDWRKR, WORK( IU ),
 | |
|      $                            LDWRKU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
| *                    Multiply Q in A by left singular vectors of R in
 | |
| *                    WORK(IU), storing result in U
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
 | |
|      $                           WORK( IU ), LDWRKU, CZERO, U, LDU )
 | |
| *
 | |
| *                    Copy right singular vectors of R to A
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
 | |
|      $                            LDA )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Zero out below R in A
 | |
| *
 | |
|                      IF( N .GT. 1 ) THEN
 | |
|                         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                               A( 2, 1 ), LDA )
 | |
|                      END IF
 | |
| *
 | |
| *                    Bidiagonalize R in A
 | |
| *                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply Q in U by left vectors bidiagonalizing R
 | |
| *                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
 | |
|      $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right vectors bidiagonalizing R in A
 | |
| *                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U and computing right
 | |
| *                    singular vectors of A in A
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
 | |
|      $                            LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTVAS ) THEN
 | |
| *
 | |
| *                 Path 6 (M much larger than N, JOBU='S', JOBVT='S'
 | |
| *                         or 'A')
 | |
| *                 N left singular vectors to be computed in U and
 | |
| *                 N right singular vectors to be computed in VT
 | |
| *
 | |
|                   IF( LWORK.GE.N*N+3*N ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*N ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is N by N
 | |
| *
 | |
|                         LDWRKU = N
 | |
|                      END IF
 | |
|                      ITAU = IU + LDWRKU*N
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R
 | |
| *                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R to WORK(IU), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+1 ), LDWRKU )
 | |
| *
 | |
| *                    Generate Q in A
 | |
| *                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in WORK(IU), copying result to VT
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
 | |
|      $                            LDVT )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in VT
 | |
| *                    (CWorkspace: need   N*N+3*N-1,
 | |
| *                                 prefer N*N+2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of R in WORK(IU) and computing
 | |
| *                    right singular vectors of R in VT
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, WORK( IU ), LDWRKU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply Q in A by left singular vectors of R in
 | |
| *                    WORK(IU), storing result in U
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
 | |
|      $                           WORK( IU ), LDWRKU, CZERO, U, LDU )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R to VT, zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
 | |
|                      IF( N.GT.1 )
 | |
|      $                  CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                               VT( 2, 1 ), LDVT )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in VT
 | |
| *                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply Q in U by left bidiagonalizing vectors
 | |
| *                    in VT
 | |
| *                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
 | |
|      $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in VT
 | |
| *                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U and computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, U, LDU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTUA ) THEN
 | |
| *
 | |
|                IF( WNTVN ) THEN
 | |
| *
 | |
| *                 Path 7 (M much larger than N, JOBU='A', JOBVT='N')
 | |
| *                 M left singular vectors to be computed in U and
 | |
| *                 no right singular vectors to be computed
 | |
| *
 | |
|                   IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IR = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*N ) THEN
 | |
| *
 | |
| *                       WORK(IR) is LDA by N
 | |
| *
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IR) is N by N
 | |
| *
 | |
|                         LDWRKR = N
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*N
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Copy R to WORK(IR), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ),
 | |
|      $                            LDWRKR )
 | |
|                      CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            WORK( IR+1 ), LDWRKR )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in WORK(IR)
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IR)
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of R in WORK(IR)
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
 | |
|      $                            1, WORK( IR ), LDWRKR, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply Q in U by left singular vectors of R in
 | |
| *                    WORK(IR), storing result in A
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
 | |
|      $                           WORK( IR ), LDWRKR, CZERO, A, LDA )
 | |
| *
 | |
| *                    Copy left singular vectors of A from A to U
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need N+M, prefer N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Zero out below R in A
 | |
| *
 | |
|                      IF( N .GT. 1 ) THEN
 | |
|                         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                               A( 2, 1 ), LDA )
 | |
|                      END IF
 | |
| *
 | |
| *                    Bidiagonalize R in A
 | |
| *                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply Q in U by left bidiagonalizing vectors
 | |
| *                    in A
 | |
| *                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
 | |
|      $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
 | |
|      $                            1, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTVO ) THEN
 | |
| *
 | |
| *                 Path 8 (M much larger than N, JOBU='A', JOBVT='O')
 | |
| *                 M left singular vectors to be computed in U and
 | |
| *                 N right singular vectors to be overwritten on A
 | |
| *
 | |
|                   IF( LWORK.GE.2*N*N+MAX( N+M, 3*N ) ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N and WORK(IR) is LDA by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*N
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N and WORK(IR) is N by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*N
 | |
|                         LDWRKR = N
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is N by N and WORK(IR) is N by N
 | |
| *
 | |
|                         LDWRKU = N
 | |
|                         IR = IU + LDWRKU*N
 | |
|                         LDWRKR = N
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*N
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R to WORK(IU), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+1 ), LDWRKU )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in WORK(IU), copying result to
 | |
| *                    WORK(IR)
 | |
| *                    (CWorkspace: need   2*N*N+3*N,
 | |
| *                                 prefer 2*N*N+2*N+2*N*NB)
 | |
| *                    (RWorkspace: need   N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( IR ), LDWRKR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IR)
 | |
| *                    (CWorkspace: need   2*N*N+3*N-1,
 | |
| *                                 prefer 2*N*N+2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of R in WORK(IU) and computing
 | |
| *                    right singular vectors of R in WORK(IR)
 | |
| *                    (CWorkspace: need 2*N*N)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IR ), LDWRKR, WORK( IU ),
 | |
|      $                            LDWRKU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
| *                    Multiply Q in U by left singular vectors of R in
 | |
| *                    WORK(IU), storing result in A
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
 | |
|      $                           WORK( IU ), LDWRKU, CZERO, A, LDA )
 | |
| *
 | |
| *                    Copy left singular vectors of A from A to U
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Copy right singular vectors of R from WORK(IR) to A
 | |
| *
 | |
|                      CALL CLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
 | |
|      $                            LDA )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need N+M, prefer N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Zero out below R in A
 | |
| *
 | |
|                      IF( N .GT. 1 ) THEN
 | |
|                         CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                               A( 2, 1 ), LDA )
 | |
|                      END IF
 | |
| *
 | |
| *                    Bidiagonalize R in A
 | |
| *                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply Q in U by left bidiagonalizing vectors
 | |
| *                    in A
 | |
| *                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
 | |
|      $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in A
 | |
| *                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U and computing right
 | |
| *                    singular vectors of A in A
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
 | |
|      $                            LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTVAS ) THEN
 | |
| *
 | |
| *                 Path 9 (M much larger than N, JOBU='A', JOBVT='S'
 | |
| *                         or 'A')
 | |
| *                 M left singular vectors to be computed in U and
 | |
| *                 N right singular vectors to be computed in VT
 | |
| *
 | |
|                   IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*N ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is N by N
 | |
| *
 | |
|                         LDWRKU = N
 | |
|                      END IF
 | |
|                      ITAU = IU + LDWRKU*N
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R to WORK(IU), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+1 ), LDWRKU )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in WORK(IU), copying result to VT
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
 | |
|      $                            LDVT )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in VT
 | |
| *                    (CWorkspace: need   N*N+3*N-1,
 | |
| *                                 prefer N*N+2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: need   0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of R in WORK(IU) and computing
 | |
| *                    right singular vectors of R in VT
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, WORK( IU ), LDWRKU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply Q in U by left singular vectors of R in
 | |
| *                    WORK(IU), storing result in A
 | |
| *                    (CWorkspace: need N*N)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
 | |
|      $                           WORK( IU ), LDWRKU, CZERO, A, LDA )
 | |
| *
 | |
| *                    Copy left singular vectors of A from A to U
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + N
 | |
| *
 | |
| *                    Compute A=Q*R, copying result to U
 | |
| *                    (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *                    Generate Q in U
 | |
| *                    (CWorkspace: need N+M, prefer N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy R from A to VT, zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
 | |
|                      IF( N.GT.1 )
 | |
|      $                  CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
 | |
|      $                               VT( 2, 1 ), LDVT )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + N
 | |
|                      IWORK = ITAUP + N
 | |
| *
 | |
| *                    Bidiagonalize R in VT
 | |
| *                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
 | |
| *                    (RWorkspace: need N)
 | |
| *
 | |
|                      CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply Q in U by left bidiagonalizing vectors
 | |
| *                    in VT
 | |
| *                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
 | |
|      $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in VT
 | |
| *                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + N
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U and computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, U, LDU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           M .LT. MNTHR
 | |
| *
 | |
| *           Path 10 (M at least N, but not much larger)
 | |
| *           Reduce to bidiagonal form without QR decomposition
 | |
| *
 | |
|             IE = 1
 | |
|             ITAUQ = 1
 | |
|             ITAUP = ITAUQ + N
 | |
|             IWORK = ITAUP + N
 | |
| *
 | |
| *           Bidiagonalize A
 | |
| *           (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
 | |
| *           (RWorkspace: need N)
 | |
| *
 | |
|             CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                   WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | |
|      $                   IERR )
 | |
|             IF( WNTUAS ) THEN
 | |
| *
 | |
| *              If left singular vectors desired in U, copy result to U
 | |
| *              and generate left bidiagonalizing vectors in U
 | |
| *              (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
|                IF( WNTUS )
 | |
|      $            NCU = N
 | |
|                IF( WNTUA )
 | |
|      $            NCU = M
 | |
|                CALL CUNGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IF( WNTVAS ) THEN
 | |
| *
 | |
| *              If right singular vectors desired in VT, copy result to
 | |
| *              VT and generate right bidiagonalizing vectors in VT
 | |
| *              (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
 | |
|                CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IF( WNTUO ) THEN
 | |
| *
 | |
| *              If left singular vectors desired in A, generate left
 | |
| *              bidiagonalizing vectors in A
 | |
| *              (CWorkspace: need 3*N, prefer 2*N+N*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IF( WNTVO ) THEN
 | |
| *
 | |
| *              If right singular vectors desired in A, generate right
 | |
| *              bidiagonalizing vectors in A
 | |
| *              (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IRWORK = IE + N
 | |
|             IF( WNTUAS .OR. WNTUO )
 | |
|      $         NRU = M
 | |
|             IF( WNTUN )
 | |
|      $         NRU = 0
 | |
|             IF( WNTVAS .OR. WNTVO )
 | |
|      $         NCVT = N
 | |
|             IF( WNTVN )
 | |
|      $         NCVT = 0
 | |
|             IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, if desired, computing
 | |
| *              left singular vectors in U and computing right singular
 | |
| *              vectors in VT
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
 | |
|      $                      LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                      INFO )
 | |
|             ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, if desired, computing
 | |
| *              left singular vectors in U and computing right singular
 | |
| *              vectors in A
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), A,
 | |
|      $                      LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                      INFO )
 | |
|             ELSE
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, if desired, computing
 | |
| *              left singular vectors in A and computing right singular
 | |
| *              vectors in VT
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
 | |
|      $                      LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                      INFO )
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        A has more columns than rows. If A has sufficiently more
 | |
| *        columns than rows, first reduce using the LQ decomposition (if
 | |
| *        sufficient workspace available)
 | |
| *
 | |
|          IF( N.GE.MNTHR ) THEN
 | |
| *
 | |
|             IF( WNTVN ) THEN
 | |
| *
 | |
| *              Path 1t(N much larger than M, JOBVT='N')
 | |
| *              No right singular vectors to be computed
 | |
| *
 | |
|                ITAU = 1
 | |
|                IWORK = ITAU + M
 | |
| *
 | |
| *              Compute A=L*Q
 | |
| *              (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
 | |
|      $                      LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *              Zero out above L
 | |
| *
 | |
|                CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
 | |
|      $                      LDA )
 | |
|                IE = 1
 | |
|                ITAUQ = 1
 | |
|                ITAUP = ITAUQ + M
 | |
|                IWORK = ITAUP + M
 | |
| *
 | |
| *              Bidiagonalize L in A
 | |
| *              (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *              (RWorkspace: need M)
 | |
| *
 | |
|                CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                      WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | |
|      $                      IERR )
 | |
|                IF( WNTUO .OR. WNTUAS ) THEN
 | |
| *
 | |
| *                 If left singular vectors desired, generate Q
 | |
| *                 (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                END IF
 | |
|                IRWORK = IE + M
 | |
|                NRU = 0
 | |
|                IF( WNTUO .OR. WNTUAS )
 | |
|      $            NRU = M
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, computing left singular
 | |
| *              vectors of A in A if desired
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'U', M, 0, NRU, 0, S, RWORK( IE ), CDUM, 1,
 | |
|      $                      A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *              If left singular vectors desired in U, copy them there
 | |
| *
 | |
|                IF( WNTUAS )
 | |
|      $            CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
 | |
| *
 | |
|             ELSE IF( WNTVO .AND. WNTUN ) THEN
 | |
| *
 | |
| *              Path 2t(N much larger than M, JOBU='N', JOBVT='O')
 | |
| *              M right singular vectors to be overwritten on A and
 | |
| *              no left singular vectors to be computed
 | |
| *
 | |
|                IF( LWORK.GE.M*M+3*M ) THEN
 | |
| *
 | |
| *                 Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                   IR = 1
 | |
|                   IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N and WORK(IR) is LDA by M
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      CHUNK = N
 | |
|                      LDWRKR = LDA
 | |
|                   ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N and WORK(IR) is M by M
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      CHUNK = N
 | |
|                      LDWRKR = M
 | |
|                   ELSE
 | |
| *
 | |
| *                    WORK(IU) is M by CHUNK and WORK(IR) is M by M
 | |
| *
 | |
|                      LDWRKU = M
 | |
|                      CHUNK = ( LWORK-M*M ) / M
 | |
|                      LDWRKR = M
 | |
|                   END IF
 | |
|                   ITAU = IR + LDWRKR*M
 | |
|                   IWORK = ITAU + M
 | |
| *
 | |
| *                 Compute A=L*Q
 | |
| *                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Copy L to WORK(IR) and zero out above it
 | |
| *
 | |
|                   CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
 | |
|                   CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                         WORK( IR+LDWRKR ), LDWRKR )
 | |
| *
 | |
| *                 Generate Q in A
 | |
| *                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IE = 1
 | |
|                   ITAUQ = ITAU
 | |
|                   ITAUP = ITAUQ + M
 | |
|                   IWORK = ITAUP + M
 | |
| *
 | |
| *                 Bidiagonalize L in WORK(IR)
 | |
| *                 (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
 | |
| *                 (RWorkspace: need M)
 | |
| *
 | |
|                   CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate right vectors bidiagonalizing L
 | |
| *                 (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
 | |
|      $                         WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                         LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + M
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing right
 | |
| *                 singular vectors of L in WORK(IR)
 | |
| *                 (CWorkspace: need M*M)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
 | |
|      $                         WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
 | |
|      $                         RWORK( IRWORK ), INFO )
 | |
|                   IU = ITAUQ
 | |
| *
 | |
| *                 Multiply right singular vectors of L in WORK(IR) by Q
 | |
| *                 in A, storing result in WORK(IU) and copying to A
 | |
| *                 (CWorkspace: need M*M+M, prefer M*M+M*N)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   DO 30 I = 1, N, CHUNK
 | |
|                      BLK = MIN( N-I+1, CHUNK )
 | |
|                      CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
 | |
|      $                           LDWRKR, A( 1, I ), LDA, CZERO,
 | |
|      $                           WORK( IU ), LDWRKU )
 | |
|                      CALL CLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
 | |
|      $                            A( 1, I ), LDA )
 | |
|    30             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                   IE = 1
 | |
|                   ITAUQ = 1
 | |
|                   ITAUP = ITAUQ + M
 | |
|                   IWORK = ITAUP + M
 | |
| *
 | |
| *                 Bidiagonalize A
 | |
| *                 (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
 | |
| *                 (RWorkspace: need M)
 | |
| *
 | |
|                   CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate right vectors bidiagonalizing A
 | |
| *                 (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + M
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing right
 | |
| *                 singular vectors of A in A
 | |
| *                 (CWorkspace: 0)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'L', M, N, 0, 0, S, RWORK( IE ), A, LDA,
 | |
|      $                         CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTVO .AND. WNTUAS ) THEN
 | |
| *
 | |
| *              Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
 | |
| *              M right singular vectors to be overwritten on A and
 | |
| *              M left singular vectors to be computed in U
 | |
| *
 | |
|                IF( LWORK.GE.M*M+3*M ) THEN
 | |
| *
 | |
| *                 Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                   IR = 1
 | |
|                   IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N and WORK(IR) is LDA by M
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      CHUNK = N
 | |
|                      LDWRKR = LDA
 | |
|                   ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
 | |
| *
 | |
| *                    WORK(IU) is LDA by N and WORK(IR) is M by M
 | |
| *
 | |
|                      LDWRKU = LDA
 | |
|                      CHUNK = N
 | |
|                      LDWRKR = M
 | |
|                   ELSE
 | |
| *
 | |
| *                    WORK(IU) is M by CHUNK and WORK(IR) is M by M
 | |
| *
 | |
|                      LDWRKU = M
 | |
|                      CHUNK = ( LWORK-M*M ) / M
 | |
|                      LDWRKR = M
 | |
|                   END IF
 | |
|                   ITAU = IR + LDWRKR*M
 | |
|                   IWORK = ITAU + M
 | |
| *
 | |
| *                 Compute A=L*Q
 | |
| *                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Copy L to U, zeroing about above it
 | |
| *
 | |
|                   CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
 | |
|                   CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
 | |
|      $                         LDU )
 | |
| *
 | |
| *                 Generate Q in A
 | |
| *                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IE = 1
 | |
|                   ITAUQ = ITAU
 | |
|                   ITAUP = ITAUQ + M
 | |
|                   IWORK = ITAUP + M
 | |
| *
 | |
| *                 Bidiagonalize L in U, copying result to WORK(IR)
 | |
| *                 (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
 | |
| *                 (RWorkspace: need M)
 | |
| *
 | |
|                   CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   CALL CLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
 | |
| *
 | |
| *                 Generate right vectors bidiagonalizing L in WORK(IR)
 | |
| *                 (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
 | |
|      $                         WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                         LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate left vectors bidiagonalizing L in U
 | |
| *                 (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + M
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing left
 | |
| *                 singular vectors of L in U, and computing right
 | |
| *                 singular vectors of L in WORK(IR)
 | |
| *                 (CWorkspace: need M*M)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
 | |
|      $                         WORK( IR ), LDWRKR, U, LDU, CDUM, 1,
 | |
|      $                         RWORK( IRWORK ), INFO )
 | |
|                   IU = ITAUQ
 | |
| *
 | |
| *                 Multiply right singular vectors of L in WORK(IR) by Q
 | |
| *                 in A, storing result in WORK(IU) and copying to A
 | |
| *                 (CWorkspace: need M*M+M, prefer M*M+M*N))
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   DO 40 I = 1, N, CHUNK
 | |
|                      BLK = MIN( N-I+1, CHUNK )
 | |
|                      CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
 | |
|      $                           LDWRKR, A( 1, I ), LDA, CZERO,
 | |
|      $                           WORK( IU ), LDWRKU )
 | |
|                      CALL CLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
 | |
|      $                            A( 1, I ), LDA )
 | |
|    40             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                   ITAU = 1
 | |
|                   IWORK = ITAU + M
 | |
| *
 | |
| *                 Compute A=L*Q
 | |
| *                 (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Copy L to U, zeroing out above it
 | |
| *
 | |
|                   CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
 | |
|                   CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
 | |
|      $                         LDU )
 | |
| *
 | |
| *                 Generate Q in A
 | |
| *                 (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IE = 1
 | |
|                   ITAUQ = ITAU
 | |
|                   ITAUP = ITAUQ + M
 | |
|                   IWORK = ITAUP + M
 | |
| *
 | |
| *                 Bidiagonalize L in U
 | |
| *                 (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                 (RWorkspace: need M)
 | |
| *
 | |
|                   CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
 | |
|      $                         WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Multiply right vectors bidiagonalizing L by Q in A
 | |
| *                 (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
 | |
|      $                         WORK( ITAUP ), A, LDA, WORK( IWORK ),
 | |
|      $                         LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                 Generate left vectors bidiagonalizing L in U
 | |
| *                 (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                 (RWorkspace: 0)
 | |
| *
 | |
|                   CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
 | |
|      $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                   IRWORK = IE + M
 | |
| *
 | |
| *                 Perform bidiagonal QR iteration, computing left
 | |
| *                 singular vectors of A in U and computing right
 | |
| *                 singular vectors of A in A
 | |
| *                 (CWorkspace: 0)
 | |
| *                 (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                   CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), A, LDA,
 | |
|      $                         U, LDU, CDUM, 1, RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTVS ) THEN
 | |
| *
 | |
|                IF( WNTUN ) THEN
 | |
| *
 | |
| *                 Path 4t(N much larger than M, JOBU='N', JOBVT='S')
 | |
| *                 M right singular vectors to be computed in VT and
 | |
| *                 no left singular vectors to be computed
 | |
| *
 | |
|                   IF( LWORK.GE.M*M+3*M ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IR = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*M ) THEN
 | |
| *
 | |
| *                       WORK(IR) is LDA by M
 | |
| *
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IR) is M by M
 | |
| *
 | |
|                         LDWRKR = M
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*M
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q
 | |
| *                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to WORK(IR), zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ),
 | |
|      $                            LDWRKR )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            WORK( IR+LDWRKR ), LDWRKR )
 | |
| *
 | |
| *                    Generate Q in A
 | |
| *                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in WORK(IR)
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right vectors bidiagonalizing L in
 | |
| *                    WORK(IR)
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing right
 | |
| *                    singular vectors of L in WORK(IR)
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply right singular vectors of L in WORK(IR) by
 | |
| *                    Q in A, storing result in VT
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
 | |
|      $                           LDWRKR, A, LDA, CZERO, VT, LDVT )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy result to VT
 | |
| *
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Zero out above L in A
 | |
| *
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            A( 1, 2 ), LDA )
 | |
| *
 | |
| *                    Bidiagonalize L in A
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply right vectors bidiagonalizing L by Q in VT
 | |
| *                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
 | |
|      $                            WORK( ITAUP ), VT, LDVT,
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, CDUM, 1, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTUO ) THEN
 | |
| *
 | |
| *                 Path 5t(N much larger than M, JOBU='O', JOBVT='S')
 | |
| *                 M right singular vectors to be computed in VT and
 | |
| *                 M left singular vectors to be overwritten on A
 | |
| *
 | |
|                   IF( LWORK.GE.2*M*M+3*M ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by M and WORK(IR) is LDA by M
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*M
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by M and WORK(IR) is M by M
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*M
 | |
|                         LDWRKR = M
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is M by M and WORK(IR) is M by M
 | |
| *
 | |
|                         LDWRKU = M
 | |
|                         IR = IU + LDWRKU*M
 | |
|                         LDWRKR = M
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*M
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q
 | |
| *                    (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to WORK(IU), zeroing out below it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+LDWRKU ), LDWRKU )
 | |
| *
 | |
| *                    Generate Q in A
 | |
| *                    (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in WORK(IU), copying result to
 | |
| *                    WORK(IR)
 | |
| *                    (CWorkspace: need   2*M*M+3*M,
 | |
| *                                 prefer 2*M*M+2*M+2*M*NB)
 | |
| *                    (RWorkspace: need   M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( IR ), LDWRKR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need   2*M*M+3*M-1,
 | |
| *                                 prefer 2*M*M+2*M+(M-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IR)
 | |
| *                    (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of L in WORK(IR) and computing
 | |
| *                    right singular vectors of L in WORK(IU)
 | |
| *                    (CWorkspace: need 2*M*M)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IU ), LDWRKU, WORK( IR ),
 | |
|      $                            LDWRKR, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
| *                    Multiply right singular vectors of L in WORK(IU) by
 | |
| *                    Q in A, storing result in VT
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
 | |
|      $                           LDWRKU, A, LDA, CZERO, VT, LDVT )
 | |
| *
 | |
| *                    Copy left singular vectors of L to A
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
 | |
|      $                            LDA )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Zero out above L in A
 | |
| *
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            A( 1, 2 ), LDA )
 | |
| *
 | |
| *                    Bidiagonalize L in A
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply right vectors bidiagonalizing L by Q in VT
 | |
| *                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
 | |
|      $                            WORK( ITAUP ), VT, LDVT,
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors of L in A
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in A and computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, A, LDA, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTUAS ) THEN
 | |
| *
 | |
| *                 Path 6t(N much larger than M, JOBU='S' or 'A',
 | |
| *                         JOBVT='S')
 | |
| *                 M right singular vectors to be computed in VT and
 | |
| *                 M left singular vectors to be computed in U
 | |
| *
 | |
|                   IF( LWORK.GE.M*M+3*M ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*M ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by N
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is LDA by M
 | |
| *
 | |
|                         LDWRKU = M
 | |
|                      END IF
 | |
|                      ITAU = IU + LDWRKU*M
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q
 | |
| *                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to WORK(IU), zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+LDWRKU ), LDWRKU )
 | |
| *
 | |
| *                    Generate Q in A
 | |
| *                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in WORK(IU), copying result to U
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
 | |
|      $                            LDU )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need   M*M+3*M-1,
 | |
| *                                 prefer M*M+2*M+(M-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in U
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of L in U and computing right
 | |
| *                    singular vectors of L in WORK(IU)
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply right singular vectors of L in WORK(IU) by
 | |
| *                    Q in A, storing result in VT
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
 | |
|      $                           LDWRKU, A, LDA, CZERO, VT, LDVT )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to U, zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            U( 1, 2 ), LDU )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in U
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply right bidiagonalizing vectors in U by Q
 | |
| *                    in VT
 | |
| *                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
 | |
|      $                            WORK( ITAUP ), VT, LDVT,
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in U
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U and computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, U, LDU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTVA ) THEN
 | |
| *
 | |
|                IF( WNTUN ) THEN
 | |
| *
 | |
| *                 Path 7t(N much larger than M, JOBU='N', JOBVT='A')
 | |
| *                 N right singular vectors to be computed in VT and
 | |
| *                 no left singular vectors to be computed
 | |
| *
 | |
|                   IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IR = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*M ) THEN
 | |
| *
 | |
| *                       WORK(IR) is LDA by M
 | |
| *
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IR) is M by M
 | |
| *
 | |
|                         LDWRKR = M
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*M
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Copy L to WORK(IR), zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ),
 | |
|      $                            LDWRKR )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            WORK( IR+LDWRKR ), LDWRKR )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in WORK(IR)
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IR)
 | |
| *                    (CWorkspace: need   M*M+3*M-1,
 | |
| *                                 prefer M*M+2*M+(M-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing right
 | |
| *                    singular vectors of L in WORK(IR)
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply right singular vectors of L in WORK(IR) by
 | |
| *                    Q in VT, storing result in A
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
 | |
|      $                           LDWRKR, VT, LDVT, CZERO, A, LDA )
 | |
| *
 | |
| *                    Copy right singular vectors of A from A to VT
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need M+N, prefer M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Zero out above L in A
 | |
| *
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            A( 1, 2 ), LDA )
 | |
| *
 | |
| *                    Bidiagonalize L in A
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply right bidiagonalizing vectors in A by Q
 | |
| *                    in VT
 | |
| *                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
 | |
|      $                            WORK( ITAUP ), VT, LDVT,
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, CDUM, 1, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTUO ) THEN
 | |
| *
 | |
| *                 Path 8t(N much larger than M, JOBU='O', JOBVT='A')
 | |
| *                 N right singular vectors to be computed in VT and
 | |
| *                 M left singular vectors to be overwritten on A
 | |
| *
 | |
|                   IF( LWORK.GE.2*M*M+MAX( N+M, 3*M ) ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by M and WORK(IR) is LDA by M
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*M
 | |
|                         LDWRKR = LDA
 | |
|                      ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by M and WORK(IR) is M by M
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                         IR = IU + LDWRKU*M
 | |
|                         LDWRKR = M
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is M by M and WORK(IR) is M by M
 | |
| *
 | |
|                         LDWRKU = M
 | |
|                         IR = IU + LDWRKU*M
 | |
|                         LDWRKR = M
 | |
|                      END IF
 | |
|                      ITAU = IR + LDWRKR*M
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to WORK(IU), zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+LDWRKU ), LDWRKU )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in WORK(IU), copying result to
 | |
| *                    WORK(IR)
 | |
| *                    (CWorkspace: need   2*M*M+3*M,
 | |
| *                                 prefer 2*M*M+2*M+2*M*NB)
 | |
| *                    (RWorkspace: need   M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( IR ), LDWRKR )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need   2*M*M+3*M-1,
 | |
| *                                 prefer 2*M*M+2*M+(M-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in WORK(IR)
 | |
| *                    (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
 | |
|      $                            WORK( ITAUQ ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of L in WORK(IR) and computing
 | |
| *                    right singular vectors of L in WORK(IU)
 | |
| *                    (CWorkspace: need 2*M*M)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IU ), LDWRKU, WORK( IR ),
 | |
|      $                            LDWRKR, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                            INFO )
 | |
| *
 | |
| *                    Multiply right singular vectors of L in WORK(IU) by
 | |
| *                    Q in VT, storing result in A
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
 | |
|      $                           LDWRKU, VT, LDVT, CZERO, A, LDA )
 | |
| *
 | |
| *                    Copy right singular vectors of A from A to VT
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Copy left singular vectors of A from WORK(IR) to A
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
 | |
|      $                            LDA )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need M+N, prefer M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Zero out above L in A
 | |
| *
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            A( 1, 2 ), LDA )
 | |
| *
 | |
| *                    Bidiagonalize L in A
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply right bidiagonalizing vectors in A by Q
 | |
| *                    in VT
 | |
| *                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
 | |
|      $                            WORK( ITAUP ), VT, LDVT,
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in A
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in A and computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, A, LDA, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                ELSE IF( WNTUAS ) THEN
 | |
| *
 | |
| *                 Path 9t(N much larger than M, JOBU='S' or 'A',
 | |
| *                         JOBVT='A')
 | |
| *                 N right singular vectors to be computed in VT and
 | |
| *                 M left singular vectors to be computed in U
 | |
| *
 | |
|                   IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
 | |
| *
 | |
| *                    Sufficient workspace for a fast algorithm
 | |
| *
 | |
|                      IU = 1
 | |
|                      IF( LWORK.GE.WRKBL+LDA*M ) THEN
 | |
| *
 | |
| *                       WORK(IU) is LDA by M
 | |
| *
 | |
|                         LDWRKU = LDA
 | |
|                      ELSE
 | |
| *
 | |
| *                       WORK(IU) is M by M
 | |
| *
 | |
|                         LDWRKU = M
 | |
|                      END IF
 | |
|                      ITAU = IU + LDWRKU*M
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to WORK(IU), zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
 | |
|      $                            LDWRKU )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            WORK( IU+LDWRKU ), LDWRKU )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in WORK(IU), copying result to U
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
 | |
|      $                            RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
 | |
|      $                            LDU )
 | |
| *
 | |
| *                    Generate right bidiagonalizing vectors in WORK(IU)
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
 | |
|      $                            WORK( ITAUP ), WORK( IWORK ),
 | |
|      $                            LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in U
 | |
| *                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of L in U and computing right
 | |
| *                    singular vectors of L in WORK(IU)
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
 | |
|      $                            WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
| *                    Multiply right singular vectors of L in WORK(IU) by
 | |
| *                    Q in VT, storing result in A
 | |
| *                    (CWorkspace: need M*M)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
 | |
|      $                           LDWRKU, VT, LDVT, CZERO, A, LDA )
 | |
| *
 | |
| *                    Copy right singular vectors of A from A to VT
 | |
| *
 | |
|                      CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    Insufficient workspace for a fast algorithm
 | |
| *
 | |
|                      ITAU = 1
 | |
|                      IWORK = ITAU + M
 | |
| *
 | |
| *                    Compute A=L*Q, copying result to VT
 | |
| *                    (CWorkspace: need 2*M, prefer M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *                    Generate Q in VT
 | |
| *                    (CWorkspace: need M+N, prefer M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Copy L to U, zeroing out above it
 | |
| *
 | |
|                      CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
 | |
|                      CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
 | |
|      $                            U( 1, 2 ), LDU )
 | |
|                      IE = 1
 | |
|                      ITAUQ = ITAU
 | |
|                      ITAUP = ITAUQ + M
 | |
|                      IWORK = ITAUP + M
 | |
| *
 | |
| *                    Bidiagonalize L in U
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
 | |
| *                    (RWorkspace: need M)
 | |
| *
 | |
|                      CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
 | |
|      $                            WORK( ITAUQ ), WORK( ITAUP ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Multiply right bidiagonalizing vectors in U by Q
 | |
| *                    in VT
 | |
| *                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
 | |
|      $                            WORK( ITAUP ), VT, LDVT,
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
| *
 | |
| *                    Generate left bidiagonalizing vectors in U
 | |
| *                    (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *                    (RWorkspace: 0)
 | |
| *
 | |
|                      CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
 | |
|      $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|                      IRWORK = IE + M
 | |
| *
 | |
| *                    Perform bidiagonal QR iteration, computing left
 | |
| *                    singular vectors of A in U and computing right
 | |
| *                    singular vectors of A in VT
 | |
| *                    (CWorkspace: 0)
 | |
| *                    (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                      CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
 | |
|      $                            LDVT, U, LDU, CDUM, 1,
 | |
|      $                            RWORK( IRWORK ), INFO )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N .LT. MNTHR
 | |
| *
 | |
| *           Path 10t(N greater than M, but not much larger)
 | |
| *           Reduce to bidiagonal form without LQ decomposition
 | |
| *
 | |
|             IE = 1
 | |
|             ITAUQ = 1
 | |
|             ITAUP = ITAUQ + M
 | |
|             IWORK = ITAUP + M
 | |
| *
 | |
| *           Bidiagonalize A
 | |
| *           (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
 | |
| *           (RWorkspace: M)
 | |
| *
 | |
|             CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
 | |
|      $                   WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
 | |
|      $                   IERR )
 | |
|             IF( WNTUAS ) THEN
 | |
| *
 | |
| *              If left singular vectors desired in U, copy result to U
 | |
| *              and generate left bidiagonalizing vectors in U
 | |
| *              (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
 | |
|                CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IF( WNTVAS ) THEN
 | |
| *
 | |
| *              If right singular vectors desired in VT, copy result to
 | |
| *              VT and generate right bidiagonalizing vectors in VT
 | |
| *              (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
|                IF( WNTVA )
 | |
|      $            NRVT = N
 | |
|                IF( WNTVS )
 | |
|      $            NRVT = M
 | |
|                CALL CUNGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IF( WNTUO ) THEN
 | |
| *
 | |
| *              If left singular vectors desired in A, generate left
 | |
| *              bidiagonalizing vectors in A
 | |
| *              (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CUNGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IF( WNTVO ) THEN
 | |
| *
 | |
| *              If right singular vectors desired in A, generate right
 | |
| *              bidiagonalizing vectors in A
 | |
| *              (CWorkspace: need 3*M, prefer 2*M+M*NB)
 | |
| *              (RWorkspace: 0)
 | |
| *
 | |
|                CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
 | |
|      $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
 | |
|             END IF
 | |
|             IRWORK = IE + M
 | |
|             IF( WNTUAS .OR. WNTUO )
 | |
|      $         NRU = M
 | |
|             IF( WNTUN )
 | |
|      $         NRU = 0
 | |
|             IF( WNTVAS .OR. WNTVO )
 | |
|      $         NCVT = N
 | |
|             IF( WNTVN )
 | |
|      $         NCVT = 0
 | |
|             IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, if desired, computing
 | |
| *              left singular vectors in U and computing right singular
 | |
| *              vectors in VT
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
 | |
|      $                      LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                      INFO )
 | |
|             ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, if desired, computing
 | |
| *              left singular vectors in U and computing right singular
 | |
| *              vectors in A
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), A,
 | |
|      $                      LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                      INFO )
 | |
|             ELSE
 | |
| *
 | |
| *              Perform bidiagonal QR iteration, if desired, computing
 | |
| *              left singular vectors in A and computing right singular
 | |
| *              vectors in VT
 | |
| *              (CWorkspace: 0)
 | |
| *              (RWorkspace: need BDSPAC)
 | |
| *
 | |
|                CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
 | |
|      $                      LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
 | |
|      $                      INFO )
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|       IF( ISCL.EQ.1 ) THEN
 | |
|          IF( ANRM.GT.BIGNUM )
 | |
|      $      CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                   IERR )
 | |
|          IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
 | |
|      $      CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
 | |
|      $                   RWORK( IE ), MINMN, IERR )
 | |
|          IF( ANRM.LT.SMLNUM )
 | |
|      $      CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                   IERR )
 | |
|          IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
 | |
|      $      CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
 | |
|      $                   RWORK( IE ), MINMN, IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Return optimal workspace in WORK(1)
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGESVD
 | |
| *
 | |
|       END
 |