1309 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1309 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {0.f,0.f};
 | |
| static integer c__9 = 9;
 | |
| static integer c__0 = 0;
 | |
| static integer c__6 = 6;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__1 = 1;
 | |
| static real c_b80 = 0.f;
 | |
| 
 | |
| /* > \brief <b> CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
 | |
| > */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGELSD + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsd.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsd.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsd.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
 | |
| /*                          WORK, LWORK, RWORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
 | |
| /*       REAL               RCOND */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       REAL               RWORK( * ), S( * ) */
 | |
| /*       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CGELSD computes the minimum-norm solution to a real linear least */
 | |
| /* > squares problem: */
 | |
| /* >     minimize 2-norm(| b - A*x |) */
 | |
| /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
 | |
| /* > matrix which may be rank-deficient. */
 | |
| /* > */
 | |
| /* > Several right hand side vectors b and solution vectors x can be */
 | |
| /* > handled in a single call; they are stored as the columns of the */
 | |
| /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
 | |
| /* > matrix X. */
 | |
| /* > */
 | |
| /* > The problem is solved in three steps: */
 | |
| /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
 | |
| /* >     Householder transformations, reducing the original problem */
 | |
| /* >     into a "bidiagonal least squares problem" (BLS) */
 | |
| /* > (2) Solve the BLS using a divide and conquer approach. */
 | |
| /* > (3) Apply back all the Householder transformations to solve */
 | |
| /* >     the original least squares problem. */
 | |
| /* > */
 | |
| /* > The effective rank of A is determined by treating as zero those */
 | |
| /* > singular values which are less than RCOND times the largest singular */
 | |
| /* > value. */
 | |
| /* > */
 | |
| /* > The divide and conquer algorithm makes very mild assumptions about */
 | |
| /* > floating point arithmetic. It will work on machines with a guard */
 | |
| /* > digit in add/subtract, or on those binary machines without guard */
 | |
| /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 | |
| /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 | |
| /* > without guard digits, but we know of none. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A. M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of right hand sides, i.e., the number of columns */
 | |
| /* >          of the matrices B and X. NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit, A has been destroyed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX array, dimension (LDB,NRHS) */
 | |
| /* >          On entry, the M-by-NRHS right hand side matrix B. */
 | |
| /* >          On exit, B is overwritten by the N-by-NRHS solution matrix X. */
 | |
| /* >          If m >= n and RANK = n, the residual sum-of-squares for */
 | |
| /* >          the solution in the i-th column is given by the sum of */
 | |
| /* >          squares of the modulus of elements n+1:m in that column. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= f2cmax(1,M,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL array, dimension (f2cmin(M,N)) */
 | |
| /* >          The singular values of A in decreasing order. */
 | |
| /* >          The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is REAL */
 | |
| /* >          RCOND is used to determine the effective rank of A. */
 | |
| /* >          Singular values S(i) <= RCOND*S(1) are treated as zero. */
 | |
| /* >          If RCOND < 0, machine precision is used instead. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RANK */
 | |
| /* > \verbatim */
 | |
| /* >          RANK is INTEGER */
 | |
| /* >          The effective rank of A, i.e., the number of singular values */
 | |
| /* >          which are greater than RCOND*S(1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK must be at least 1. */
 | |
| /* >          The exact minimum amount of workspace needed depends on M, */
 | |
| /* >          N and NRHS. As long as LWORK is at least */
 | |
| /* >              2 * N + N * NRHS */
 | |
| /* >          if M is greater than or equal to N or */
 | |
| /* >              2 * M + M * NRHS */
 | |
| /* >          if M is less than N, the code will execute correctly. */
 | |
| /* >          For good performance, LWORK should generally be larger. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the array WORK and the */
 | |
| /* >          minimum sizes of the arrays RWORK and IWORK, and returns */
 | |
| /* >          these values as the first entries of the WORK, RWORK and */
 | |
| /* >          IWORK arrays, and no error message related to LWORK is issued */
 | |
| /* >          by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is REAL array, dimension (MAX(1,LRWORK)) */
 | |
| /* >          LRWORK >= */
 | |
| /* >             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
 | |
| /* >             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
 | |
| /* >          if M is greater than or equal to N or */
 | |
| /* >             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */
 | |
| /* >             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
 | |
| /* >          if M is less than N, the code will execute correctly. */
 | |
| /* >          SMLSIZ is returned by ILAENV and is equal to the maximum */
 | |
| /* >          size of the subproblems at the bottom of the computation */
 | |
| /* >          tree (usually about 25), and */
 | |
| /* >             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
 | |
| /* >          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
 | |
| /* >          LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
 | |
| /* >          where MINMN = MIN( M,N ). */
 | |
| /* >          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  the algorithm for computing the SVD failed to converge; */
 | |
| /* >                if INFO = i, i off-diagonal elements of an intermediate */
 | |
| /* >                bidiagonal form did not converge to zero. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complexGEsolve */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
 | |
| /* >       California at Berkeley, USA \n */
 | |
| /* >     Osni Marques, LBNL/NERSC, USA \n */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgelsd_(integer *m, integer *n, integer *nrhs, complex *
 | |
| 	a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, 
 | |
| 	integer *rank, complex *work, integer *lwork, real *rwork, integer *
 | |
| 	iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real anrm, bnrm;
 | |
|     integer itau, nlvl, iascl, ibscl;
 | |
|     real sfmin;
 | |
|     integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
 | |
|     extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *, 
 | |
| 	    integer *, real *, real *, complex *, complex *, complex *, 
 | |
| 	    integer *, integer *), slabad_(real *, real *);
 | |
|     extern real clange_(char *, integer *, integer *, complex *, integer *, 
 | |
| 	    real *);
 | |
|     integer mm;
 | |
|     extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *, 
 | |
| 	    integer *, complex *, complex *, integer *, integer *), clalsd_(
 | |
| 	    char *, integer *, integer *, integer *, real *, real *, complex *
 | |
| 	    , integer *, real *, integer *, complex *, real *, integer *, 
 | |
| 	    integer *), clascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, 
 | |
| 	    complex *, complex *, integer *, integer *);
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex 
 | |
| 	    *, integer *, complex *, integer *), claset_(char *, 
 | |
| 	    integer *, integer *, complex *, complex *, complex *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, complex *, integer *, complex *, complex *, integer *, 
 | |
| 	    complex *, integer *, integer *), slaset_(
 | |
| 	    char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, 
 | |
| 	    complex *, integer *, complex *, complex *, integer *, complex *, 
 | |
| 	    integer *, integer *);
 | |
|     integer ldwork;
 | |
|     extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, complex *, integer *, complex *, complex *, integer *, 
 | |
| 	    complex *, integer *, integer *);
 | |
|     integer liwork, minwrk, maxwrk;
 | |
|     real smlnum;
 | |
|     integer lrwork;
 | |
|     logical lquery;
 | |
|     integer nrwork, smlsiz;
 | |
|     real eps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --s;
 | |
|     --work;
 | |
|     --rwork;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     minmn = f2cmin(*m,*n);
 | |
|     maxmn = f2cmax(*m,*n);
 | |
|     lquery = *lwork == -1;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldb < f2cmax(1,maxmn)) {
 | |
| 	*info = -7;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace. */
 | |
| /*     (Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*     minimal amount of workspace needed at that point in the code, */
 | |
| /*     as well as the preferred amount for good performance. */
 | |
| /*     NB refers to the optimal block size for the immediately */
 | |
| /*     following subroutine, as returned by ILAENV.) */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	minwrk = 1;
 | |
| 	maxwrk = 1;
 | |
| 	liwork = 1;
 | |
| 	lrwork = 1;
 | |
| 	if (minmn > 0) {
 | |
| 	    smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0,
 | |
| 		     (ftnlen)6, (ftnlen)1);
 | |
| 	    mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
 | |
| 		    6, (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(
 | |
| 		    2.f)) + 1;
 | |
| 	    nlvl = f2cmax(i__1,0);
 | |
| 	    liwork = minmn * 3 * nlvl + minmn * 11;
 | |
| 	    mm = *m;
 | |
| 	    if (*m >= *n && *m >= mnthr) {
 | |
| 
 | |
| /*              Path 1a - overdetermined, with many more rows than */
 | |
| /*                        columns. */
 | |
| 
 | |
| 		mm = *n;
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n,
 | |
| 			 &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", 
 | |
| 			m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	    if (*m >= *n) {
 | |
| 
 | |
| /*              Path 1 - overdetermined or exactly determined. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| /* Computing 2nd power */
 | |
| 		i__3 = smlsiz + 1;
 | |
| 		i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
 | |
| 		lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl + 
 | |
| 			smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1, 
 | |
| 			"CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 			ftnlen)1);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1, 
 | |
| 			"CUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (
 | |
| 			ftnlen)3);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, 
 | |
| 			"CUNMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
 | |
| 			ftnlen)3);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
 | |
| 		minwrk = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	    if (*n > *m) {
 | |
| /* Computing MAX */
 | |
| /* Computing 2nd power */
 | |
| 		i__3 = smlsiz + 1;
 | |
| 		i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
 | |
| 		lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl + 
 | |
| 			smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
 | |
| 		if (*n >= mnthr) {
 | |
| 
 | |
| /*                 Path 2a - underdetermined, with many more columns */
 | |
| /*                           than rows. */
 | |
| 
 | |
| 		    maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
 | |
| 			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 
 | |
| 			    ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, 
 | |
| 			    (ftnlen)6, (ftnlen)1);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * 
 | |
| 			    ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1,
 | |
| 			     (ftnlen)6, (ftnlen)3);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 
 | |
| 			    ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1, 
 | |
| 			    (ftnlen)6, (ftnlen)2);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    if (*nrhs > 1) {
 | |
| /* Computing MAX */
 | |
| 			i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
 | |
| 			maxwrk = f2cmax(i__1,i__2);
 | |
| 		    } else {
 | |
| /* Computing MAX */
 | |
| 			i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
 | |
| 			maxwrk = f2cmax(i__1,i__2);
 | |
| 		    }
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /*     XXX: Ensure the Path 2a case below is triggered.  The workspace */
 | |
| /*     calculation should use queries for all routines eventually. */
 | |
| /* Computing MAX */
 | |
| /* Computing MAX */
 | |
| 		    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), 
 | |
| 			    i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
 | |
| 		    i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
 | |
| 			    ;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Path 2 - underdetermined. */
 | |
| 
 | |
| 		    maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD", 
 | |
| 			    " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, 
 | |
| 			    "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
 | |
| 			    ftnlen)3);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, 
 | |
| 			    "CUNMBR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (
 | |
| 			    ftnlen)3);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
 | |
| 		minwrk = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	}
 | |
| 	minwrk = f2cmin(minwrk,maxwrk);
 | |
| 	work[1].r = (real) maxwrk, work[1].i = 0.f;
 | |
| 	iwork[1] = liwork;
 | |
| 	rwork[1] = (real) lrwork;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -12;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CGELSD", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	*rank = 0;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine parameters. */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     sfmin = slamch_("S");
 | |
|     smlnum = sfmin / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
|     slabad_(&smlnum, &bignum);
 | |
| 
 | |
| /*     Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
 | |
| 
 | |
|     anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
 | |
|     iascl = 0;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 
 | |
| /*        Scale matrix norm up to SMLNUM */
 | |
| 
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
 | |
| 		info);
 | |
| 	iascl = 1;
 | |
|     } else if (anrm > bignum) {
 | |
| 
 | |
| /*        Scale matrix norm down to BIGNUM. */
 | |
| 
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
 | |
| 		info);
 | |
| 	iascl = 2;
 | |
|     } else if (anrm == 0.f) {
 | |
| 
 | |
| /*        Matrix all zero. Return zero solution. */
 | |
| 
 | |
| 	i__1 = f2cmax(*m,*n);
 | |
| 	claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
 | |
| 	slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
 | |
| 	*rank = 0;
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
| /*     Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
 | |
| 
 | |
|     bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
 | |
|     ibscl = 0;
 | |
|     if (bnrm > 0.f && bnrm < smlnum) {
 | |
| 
 | |
| /*        Scale matrix norm up to SMLNUM. */
 | |
| 
 | |
| 	clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	ibscl = 1;
 | |
|     } else if (bnrm > bignum) {
 | |
| 
 | |
| /*        Scale matrix norm down to BIGNUM. */
 | |
| 
 | |
| 	clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	ibscl = 2;
 | |
|     }
 | |
| 
 | |
| /*     If M < N make sure B(M+1:N,:) = 0 */
 | |
| 
 | |
|     if (*m < *n) {
 | |
| 	i__1 = *n - *m;
 | |
| 	claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
 | |
|     }
 | |
| 
 | |
| /*     Overdetermined case. */
 | |
| 
 | |
|     if (*m >= *n) {
 | |
| 
 | |
| /*        Path 1 - overdetermined or exactly determined. */
 | |
| 
 | |
| 	mm = *m;
 | |
| 	if (*m >= mnthr) {
 | |
| 
 | |
| /*           Path 1a - overdetermined, with many more rows than columns */
 | |
| 
 | |
| 	    mm = *n;
 | |
| 	    itau = 1;
 | |
| 	    nwork = itau + *n;
 | |
| 
 | |
| /*           Compute A=Q*R. */
 | |
| /*           (RWorkspace: need N) */
 | |
| /*           (CWorkspace: need N, prefer N*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
 | |
| 		     info);
 | |
| 
 | |
| /*           Multiply B by transpose(Q). */
 | |
| /*           (RWorkspace: need N) */
 | |
| /*           (CWorkspace: need NRHS, prefer NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
 | |
| 		    b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| /*           Zero out below R. */
 | |
| 
 | |
| 	    if (*n > 1) {
 | |
| 		i__1 = *n - 1;
 | |
| 		i__2 = *n - 1;
 | |
| 		claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	itauq = 1;
 | |
| 	itaup = itauq + *n;
 | |
| 	nwork = itaup + *n;
 | |
| 	ie = 1;
 | |
| 	nrwork = ie + *n;
 | |
| 
 | |
| /*        Bidiagonalize R in A. */
 | |
| /*        (RWorkspace: need N) */
 | |
| /*        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
 | |
| 
 | |
| 	i__1 = *lwork - nwork + 1;
 | |
| 	cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
 | |
| 		work[itaup], &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Multiply B by transpose of left bidiagonalizing vectors of R. */
 | |
| /*        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
 | |
| 
 | |
| 	i__1 = *lwork - nwork + 1;
 | |
| 	cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
 | |
| 		&b[b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Solve the bidiagonal least squares problem. */
 | |
| 
 | |
| 	clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, 
 | |
| 		rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
 | |
| 	if (*info != 0) {
 | |
| 	    goto L10;
 | |
| 	}
 | |
| 
 | |
| /*        Multiply B by right bidiagonalizing vectors of R. */
 | |
| 
 | |
| 	i__1 = *lwork - nwork + 1;
 | |
| 	cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
 | |
| 		b[b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
 | |
| 		i__1,*nrhs), i__2 = *n - *m * 3;
 | |
| 	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,i__2)) {
 | |
| 
 | |
| /*        Path 2a - underdetermined, with many more columns than rows */
 | |
| /*        and sufficient workspace for an efficient algorithm. */
 | |
| 
 | |
| 	    ldwork = *m;
 | |
| /* Computing MAX */
 | |
| /* Computing MAX */
 | |
| 	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 = 
 | |
| 		    f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
 | |
| 	    i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda + 
 | |
| 		    *m + *m * *nrhs;
 | |
| 	    if (*lwork >= f2cmax(i__1,i__2)) {
 | |
| 		ldwork = *lda;
 | |
| 	    }
 | |
| 	    itau = 1;
 | |
| 	    nwork = *m + 1;
 | |
| 
 | |
| /*        Compute A=L*Q. */
 | |
| /*        (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
 | |
| 		     info);
 | |
| 	    il = nwork;
 | |
| 
 | |
| /*        Copy L to WORK(IL), zeroing out above its diagonal. */
 | |
| 
 | |
| 	    clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
 | |
| 	    i__1 = *m - 1;
 | |
| 	    i__2 = *m - 1;
 | |
| 	    claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
 | |
| 		    ldwork);
 | |
| 	    itauq = il + ldwork * *m;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    nwork = itaup + *m;
 | |
| 	    ie = 1;
 | |
| 	    nrwork = ie + *m;
 | |
| 
 | |
| /*        Bidiagonalize L in WORK(IL). */
 | |
| /*        (RWorkspace: need M) */
 | |
| /*        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
 | |
| 		     &work[itaup], &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Multiply B by transpose of left bidiagonalizing vectors of L. */
 | |
| /*        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
 | |
| 		    itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Solve the bidiagonal least squares problem. */
 | |
| 
 | |
| 	    clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], 
 | |
| 		    ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
 | |
| 		     info);
 | |
| 	    if (*info != 0) {
 | |
| 		goto L10;
 | |
| 	    }
 | |
| 
 | |
| /*        Multiply B by right bidiagonalizing vectors of L. */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
 | |
| 		    itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Zero out below first M rows of B. */
 | |
| 
 | |
| 	    i__1 = *n - *m;
 | |
| 	    claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
 | |
| 	    nwork = itau + *m;
 | |
| 
 | |
| /*        Multiply transpose(Q) by B. */
 | |
| /*        (CWorkspace: need NRHS, prefer NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
 | |
| 		    b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*        Path 2 - remaining underdetermined cases. */
 | |
| 
 | |
| 	    itauq = 1;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    nwork = itaup + *m;
 | |
| 	    ie = 1;
 | |
| 	    nrwork = ie + *m;
 | |
| 
 | |
| /*        Bidiagonalize A. */
 | |
| /*        (RWorkspace: need M) */
 | |
| /*        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], 
 | |
| 		    &work[itaup], &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Multiply B by transpose of left bidiagonalizing vectors. */
 | |
| /*        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
 | |
| 		    , &b[b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| /*        Solve the bidiagonal least squares problem. */
 | |
| 
 | |
| 	    clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], 
 | |
| 		    ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
 | |
| 		     info);
 | |
| 	    if (*info != 0) {
 | |
| 		goto L10;
 | |
| 	    }
 | |
| 
 | |
| /*        Multiply B by right bidiagonalizing vectors of A. */
 | |
| 
 | |
| 	    i__1 = *lwork - nwork + 1;
 | |
| 	    cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
 | |
| 		    , &b[b_offset], ldb, &work[nwork], &i__1, info);
 | |
| 
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling. */
 | |
| 
 | |
|     if (iascl == 1) {
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		minmn, info);
 | |
|     } else if (iascl == 2) {
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		minmn, info);
 | |
|     }
 | |
|     if (ibscl == 1) {
 | |
| 	clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
|     } else if (ibscl == 2) {
 | |
| 	clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
|     }
 | |
| 
 | |
| L10:
 | |
|     work[1].r = (real) maxwrk, work[1].i = 0.f;
 | |
|     iwork[1] = liwork;
 | |
|     rwork[1] = (real) lrwork;
 | |
|     return;
 | |
| 
 | |
| /*     End of CGELSD */
 | |
| 
 | |
| } /* cgelsd_ */
 | |
| 
 |