1295 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1295 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
 | |
| rices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGEEVX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeevx.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeevx.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeevx.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL, */
 | |
| /*                          LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, */
 | |
| /*                          RCONDV, WORK, LWORK, RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          BALANC, JOBVL, JOBVR, SENSE */
 | |
| /*       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
 | |
| /*       REAL               ABNRM */
 | |
| /*       REAL               RCONDE( * ), RCONDV( * ), RWORK( * ), */
 | |
| /*      $                   SCALE( * ) */
 | |
| /*       COMPLEX            A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
 | |
| /*      $                   W( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
 | |
| /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
 | |
| /* > */
 | |
| /* > Optionally also, it computes a balancing transformation to improve */
 | |
| /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
 | |
| /* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
 | |
| /* > (RCONDE), and reciprocal condition numbers for the right */
 | |
| /* > eigenvectors (RCONDV). */
 | |
| /* > */
 | |
| /* > The right eigenvector v(j) of A satisfies */
 | |
| /* >                  A * v(j) = lambda(j) * v(j) */
 | |
| /* > where lambda(j) is its eigenvalue. */
 | |
| /* > The left eigenvector u(j) of A satisfies */
 | |
| /* >               u(j)**H * A = lambda(j) * u(j)**H */
 | |
| /* > where u(j)**H denotes the conjugate transpose of u(j). */
 | |
| /* > */
 | |
| /* > The computed eigenvectors are normalized to have Euclidean norm */
 | |
| /* > equal to 1 and largest component real. */
 | |
| /* > */
 | |
| /* > Balancing a matrix means permuting the rows and columns to make it */
 | |
| /* > more nearly upper triangular, and applying a diagonal similarity */
 | |
| /* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
 | |
| /* > make its rows and columns closer in norm and the condition numbers */
 | |
| /* > of its eigenvalues and eigenvectors smaller.  The computed */
 | |
| /* > reciprocal condition numbers correspond to the balanced matrix. */
 | |
| /* > Permuting rows and columns will not change the condition numbers */
 | |
| /* > (in exact arithmetic) but diagonal scaling will.  For further */
 | |
| /* > explanation of balancing, see section 4.10.2 of the LAPACK */
 | |
| /* > Users' Guide. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] BALANC */
 | |
| /* > \verbatim */
 | |
| /* >          BALANC is CHARACTER*1 */
 | |
| /* >          Indicates how the input matrix should be diagonally scaled */
 | |
| /* >          and/or permuted to improve the conditioning of its */
 | |
| /* >          eigenvalues. */
 | |
| /* >          = 'N': Do not diagonally scale or permute; */
 | |
| /* >          = 'P': Perform permutations to make the matrix more nearly */
 | |
| /* >                 upper triangular. Do not diagonally scale; */
 | |
| /* >          = 'S': Diagonally scale the matrix, ie. replace A by */
 | |
| /* >                 D*A*D**(-1), where D is a diagonal matrix chosen */
 | |
| /* >                 to make the rows and columns of A more equal in */
 | |
| /* >                 norm. Do not permute; */
 | |
| /* >          = 'B': Both diagonally scale and permute A. */
 | |
| /* > */
 | |
| /* >          Computed reciprocal condition numbers will be for the matrix */
 | |
| /* >          after balancing and/or permuting. Permuting does not change */
 | |
| /* >          condition numbers (in exact arithmetic), but balancing does. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVL */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVL is CHARACTER*1 */
 | |
| /* >          = 'N': left eigenvectors of A are not computed; */
 | |
| /* >          = 'V': left eigenvectors of A are computed. */
 | |
| /* >          If SENSE = 'E' or 'B', JOBVL must = 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVR */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVR is CHARACTER*1 */
 | |
| /* >          = 'N': right eigenvectors of A are not computed; */
 | |
| /* >          = 'V': right eigenvectors of A are computed. */
 | |
| /* >          If SENSE = 'E' or 'B', JOBVR must = 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SENSE */
 | |
| /* > \verbatim */
 | |
| /* >          SENSE is CHARACTER*1 */
 | |
| /* >          Determines which reciprocal condition numbers are computed. */
 | |
| /* >          = 'N': None are computed; */
 | |
| /* >          = 'E': Computed for eigenvalues only; */
 | |
| /* >          = 'V': Computed for right eigenvectors only; */
 | |
| /* >          = 'B': Computed for eigenvalues and right eigenvectors. */
 | |
| /* > */
 | |
| /* >          If SENSE = 'E' or 'B', both left and right eigenvectors */
 | |
| /* >          must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA,N) */
 | |
| /* >          On entry, the N-by-N matrix A. */
 | |
| /* >          On exit, A has been overwritten.  If JOBVL = 'V' or */
 | |
| /* >          JOBVR = 'V', A contains the Schur form of the balanced */
 | |
| /* >          version of the matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is COMPLEX array, dimension (N) */
 | |
| /* >          W contains the computed eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is COMPLEX array, dimension (LDVL,N) */
 | |
| /* >          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
 | |
| /* >          after another in the columns of VL, in the same order */
 | |
| /* >          as their eigenvalues. */
 | |
| /* >          If JOBVL = 'N', VL is not referenced. */
 | |
| /* >          u(j) = VL(:,j), the j-th column of VL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of the array VL.  LDVL >= 1; if */
 | |
| /* >          JOBVL = 'V', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is COMPLEX array, dimension (LDVR,N) */
 | |
| /* >          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
 | |
| /* >          after another in the columns of VR, in the same order */
 | |
| /* >          as their eigenvalues. */
 | |
| /* >          If JOBVR = 'N', VR is not referenced. */
 | |
| /* >          v(j) = VR(:,j), the j-th column of VR. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the array VR.  LDVR >= 1; if */
 | |
| /* >          JOBVR = 'V', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >          ILO and IHI are integer values determined when A was */
 | |
| /* >          balanced.  The balanced A(i,j) = 0 if I > J and */
 | |
| /* >          J = 1,...,ILO-1 or I = IHI+1,...,N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is REAL array, dimension (N) */
 | |
| /* >          Details of the permutations and scaling factors applied */
 | |
| /* >          when balancing A.  If P(j) is the index of the row and column */
 | |
| /* >          interchanged with row and column j, and D(j) is the scaling */
 | |
| /* >          factor applied to row and column j, then */
 | |
| /* >          SCALE(J) = P(J),    for J = 1,...,ILO-1 */
 | |
| /* >                   = D(J),    for J = ILO,...,IHI */
 | |
| /* >                   = P(J)     for J = IHI+1,...,N. */
 | |
| /* >          The order in which the interchanges are made is N to IHI+1, */
 | |
| /* >          then 1 to ILO-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ABNRM */
 | |
| /* > \verbatim */
 | |
| /* >          ABNRM is REAL */
 | |
| /* >          The one-norm of the balanced matrix (the maximum */
 | |
| /* >          of the sum of absolute values of elements of any column). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCONDE */
 | |
| /* > \verbatim */
 | |
| /* >          RCONDE is REAL array, dimension (N) */
 | |
| /* >          RCONDE(j) is the reciprocal condition number of the j-th */
 | |
| /* >          eigenvalue. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCONDV */
 | |
| /* > \verbatim */
 | |
| /* >          RCONDV is REAL array, dimension (N) */
 | |
| /* >          RCONDV(j) is the reciprocal condition number of the j-th */
 | |
| /* >          right eigenvector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK.  If SENSE = 'N' or 'E', */
 | |
| /* >          LWORK >= f2cmax(1,2*N), and if SENSE = 'V' or 'B', */
 | |
| /* >          LWORK >= N*N+2*N. */
 | |
| /* >          For good performance, LWORK must generally be larger. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is REAL array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  if INFO = i, the QR algorithm failed to compute all the */
 | |
| /* >                eigenvalues, and no eigenvectors or condition numbers */
 | |
| /* >                have been computed; elements 1:ILO-1 and i+1:N of W */
 | |
| /* >                contain eigenvalues which have converged. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /*  @generated from zgeevx.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
 | |
| 
 | |
| /* > \ingroup complexGEeigen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgeevx_(char *balanc, char *jobvl, char *jobvr, char *
 | |
| 	sense, integer *n, complex *a, integer *lda, complex *w, complex *vl, 
 | |
| 	integer *ldvl, complex *vr, integer *ldvr, integer *ilo, integer *ihi,
 | |
| 	 real *scale, real *abnrm, real *rconde, real *rcondv, complex *work, 
 | |
| 	integer *lwork, real *rwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
 | |
| 	    i__2, i__3;
 | |
|     real r__1, r__2;
 | |
|     complex q__1, q__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     char side[1];
 | |
|     real anrm;
 | |
|     integer ierr, itau, iwrk, nout, i__, k;
 | |
|     extern /* Subroutine */ void cscal_(integer *, complex *, complex *, 
 | |
| 	    integer *);
 | |
|     integer icond;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern real scnrm2_(integer *, complex *, integer *);
 | |
|     extern /* Subroutine */ void cgebak_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *), slabad_(real *, 
 | |
| 	    real *);
 | |
|     logical scalea;
 | |
|     extern real clange_(char *, integer *, integer *, complex *, integer *, 
 | |
| 	    real *);
 | |
|     real cscale;
 | |
|     extern /* Subroutine */ void cgehrd_(integer *, integer *, integer *, 
 | |
| 	    complex *, integer *, complex *, complex *, integer *, integer *),
 | |
| 	     clascl_(char *, integer *, integer *, real *, real *, integer *, 
 | |
| 	    integer *, complex *, integer *, integer *);
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer 
 | |
| 	    *), clacpy_(char *, integer *, integer *, complex *, integer *, 
 | |
| 	    complex *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     logical select[1];
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ void chseqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, complex *, integer *, complex *, complex *, integer *, 
 | |
| 	    complex *, integer *, integer *), cunghr_(integer 
 | |
| 	    *, integer *, integer *, complex *, integer *, complex *, complex 
 | |
| 	    *, integer *, integer *), ctrsna_(char *, char *, logical *, 
 | |
| 	    integer *, complex *, integer *, complex *, integer *, complex *, 
 | |
| 	    integer *, real *, real *, integer *, integer *, complex *, 
 | |
| 	    integer *, real *, integer *);
 | |
|     integer minwrk, maxwrk;
 | |
|     logical wantvl, wntsnb;
 | |
|     integer hswork;
 | |
|     logical wntsne;
 | |
|     real smlnum;
 | |
|     logical lquery, wantvr, wntsnn, wntsnv;
 | |
|     extern /* Subroutine */ void ctrevc3_(char *, char *, logical *, integer *,
 | |
| 	     complex *, integer *, complex *, integer *, complex *, integer *,
 | |
| 	     integer *, integer *, complex *, integer *, real *, integer *, 
 | |
| 	    integer *);
 | |
|     char job[1];
 | |
|     real scl, dum[1], eps;
 | |
|     complex tmp;
 | |
|     integer lwork_trevc__;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --w;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --scale;
 | |
|     --rconde;
 | |
|     --rcondv;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1;
 | |
|     wantvl = lsame_(jobvl, "V");
 | |
|     wantvr = lsame_(jobvr, "V");
 | |
|     wntsnn = lsame_(sense, "N");
 | |
|     wntsne = lsame_(sense, "E");
 | |
|     wntsnv = lsame_(sense, "V");
 | |
|     wntsnb = lsame_(sense, "B");
 | |
|     if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") 
 | |
| 	    || lsame_(balanc, "B"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! wantvl && ! lsame_(jobvl, "N")) {
 | |
| 	*info = -2;
 | |
|     } else if (! wantvr && ! lsame_(jobvr, "N")) {
 | |
| 	*info = -3;
 | |
|     } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
 | |
| 	    && ! (wantvl && wantvr)) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
 | |
| 	*info = -12;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| /*      (Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*       minimal amount of workspace needed at that point in the code, */
 | |
| /*       as well as the preferred amount for good performance. */
 | |
| /*       CWorkspace refers to complex workspace, and RWorkspace to real */
 | |
| /*       workspace. NB refers to the optimal block size for the */
 | |
| /*       immediately following subroutine, as returned by ILAENV. */
 | |
| /*       HSWORK refers to the workspace preferred by CHSEQR, as */
 | |
| /*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
 | |
| /*       the worst case.) */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	if (*n == 0) {
 | |
| 	    minwrk = 1;
 | |
| 	    maxwrk = 1;
 | |
| 	} else {
 | |
| 	    maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
 | |
| 		    c__0, (ftnlen)6, (ftnlen)1);
 | |
| 
 | |
| 	    if (wantvl) {
 | |
| 		ctrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
 | |
| 			vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
 | |
| 			work[1], &c_n1, &rwork[1], &c_n1, &ierr);
 | |
| 		lwork_trevc__ = (integer) work[1].r;
 | |
| 		maxwrk = f2cmax(maxwrk,lwork_trevc__);
 | |
| 		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
 | |
| 			vl_offset], ldvl, &work[1], &c_n1, info);
 | |
| 	    } else if (wantvr) {
 | |
| 		ctrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
 | |
| 			vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
 | |
| 			work[1], &c_n1, &rwork[1], &c_n1, &ierr);
 | |
| 		lwork_trevc__ = (integer) work[1].r;
 | |
| 		maxwrk = f2cmax(maxwrk,lwork_trevc__);
 | |
| 		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
 | |
| 			vr_offset], ldvr, &work[1], &c_n1, info);
 | |
| 	    } else {
 | |
| 		if (wntsnn) {
 | |
| 		    chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
 | |
| 			    vr[vr_offset], ldvr, &work[1], &c_n1, info);
 | |
| 		} else {
 | |
| 		    chseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
 | |
| 			    vr[vr_offset], ldvr, &work[1], &c_n1, info);
 | |
| 		}
 | |
| 	    }
 | |
| 	    hswork = (integer) work[1].r;
 | |
| 
 | |
| 	    if (! wantvl && ! wantvr) {
 | |
| 		minwrk = *n << 1;
 | |
| 		if (! (wntsnn || wntsne)) {
 | |
| /* Computing MAX */
 | |
| 		    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
 | |
| 		    minwrk = f2cmax(i__1,i__2);
 | |
| 		}
 | |
| 		maxwrk = f2cmax(maxwrk,hswork);
 | |
| 		if (! (wntsnn || wntsne)) {
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		minwrk = *n << 1;
 | |
| 		if (! (wntsnn || wntsne)) {
 | |
| /* Computing MAX */
 | |
| 		    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
 | |
| 		    minwrk = f2cmax(i__1,i__2);
 | |
| 		}
 | |
| 		maxwrk = f2cmax(maxwrk,hswork);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
 | |
| 			 " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| 		if (! (wntsnn || wntsne)) {
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n << 1;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	    maxwrk = f2cmax(maxwrk,minwrk);
 | |
| 	}
 | |
| 	work[1].r = (real) maxwrk, work[1].i = 0.f;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -20;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CGEEVX", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     smlnum = slamch_("S");
 | |
|     bignum = 1.f / smlnum;
 | |
|     slabad_(&smlnum, &bignum);
 | |
|     smlnum = sqrt(smlnum) / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     icond = 0;
 | |
|     anrm = clange_("M", n, n, &a[a_offset], lda, dum);
 | |
|     scalea = FALSE_;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 	scalea = TRUE_;
 | |
| 	cscale = smlnum;
 | |
|     } else if (anrm > bignum) {
 | |
| 	scalea = TRUE_;
 | |
| 	cscale = bignum;
 | |
|     }
 | |
|     if (scalea) {
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
| /*     Balance the matrix and compute ABNRM */
 | |
| 
 | |
|     cgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
 | |
|     *abnrm = clange_("1", n, n, &a[a_offset], lda, dum);
 | |
|     if (scalea) {
 | |
| 	dum[0] = *abnrm;
 | |
| 	slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
 | |
| 		ierr);
 | |
| 	*abnrm = dum[0];
 | |
|     }
 | |
| 
 | |
| /*     Reduce to upper Hessenberg form */
 | |
| /*     (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*     (RWorkspace: none) */
 | |
| 
 | |
|     itau = 1;
 | |
|     iwrk = itau + *n;
 | |
|     i__1 = *lwork - iwrk + 1;
 | |
|     cgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
 | |
| 	    ierr);
 | |
| 
 | |
|     if (wantvl) {
 | |
| 
 | |
| /*        Want left eigenvectors */
 | |
| /*        Copy Householder vectors to VL */
 | |
| 
 | |
| 	*(unsigned char *)side = 'L';
 | |
| 	clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
 | |
| 		;
 | |
| 
 | |
| /*        Generate unitary matrix in VL */
 | |
| /*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
 | |
| /*        (RWorkspace: none) */
 | |
| 
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	cunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
 | |
| 		i__1, &ierr);
 | |
| 
 | |
| /*        Perform QR iteration, accumulating Schur vectors in VL */
 | |
| /*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
 | |
| /*        (RWorkspace: none) */
 | |
| 
 | |
| 	iwrk = itau;
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
 | |
| 		vl_offset], ldvl, &work[iwrk], &i__1, info);
 | |
| 
 | |
| 	if (wantvr) {
 | |
| 
 | |
| /*           Want left and right eigenvectors */
 | |
| /*           Copy Schur vectors to VR */
 | |
| 
 | |
| 	    *(unsigned char *)side = 'B';
 | |
| 	    clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
 | |
| 	}
 | |
| 
 | |
|     } else if (wantvr) {
 | |
| 
 | |
| /*        Want right eigenvectors */
 | |
| /*        Copy Householder vectors to VR */
 | |
| 
 | |
| 	*(unsigned char *)side = 'R';
 | |
| 	clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
 | |
| 		;
 | |
| 
 | |
| /*        Generate unitary matrix in VR */
 | |
| /*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
 | |
| /*        (RWorkspace: none) */
 | |
| 
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	cunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
 | |
| 		i__1, &ierr);
 | |
| 
 | |
| /*        Perform QR iteration, accumulating Schur vectors in VR */
 | |
| /*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
 | |
| /*        (RWorkspace: none) */
 | |
| 
 | |
| 	iwrk = itau;
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
 | |
| 		vr_offset], ldvr, &work[iwrk], &i__1, info);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Compute eigenvalues only */
 | |
| /*        If condition numbers desired, compute Schur form */
 | |
| 
 | |
| 	if (wntsnn) {
 | |
| 	    *(unsigned char *)job = 'E';
 | |
| 	} else {
 | |
| 	    *(unsigned char *)job = 'S';
 | |
| 	}
 | |
| 
 | |
| /*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
 | |
| /*        (RWorkspace: none) */
 | |
| 
 | |
| 	iwrk = itau;
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	chseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
 | |
| 		vr_offset], ldvr, &work[iwrk], &i__1, info);
 | |
|     }
 | |
| 
 | |
| /*     If INFO .NE. 0 from CHSEQR, then quit */
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	goto L50;
 | |
|     }
 | |
| 
 | |
|     if (wantvl || wantvr) {
 | |
| 
 | |
| /*        Compute left and/or right eigenvectors */
 | |
| /*        (CWorkspace: need 2*N, prefer N + 2*N*NB) */
 | |
| /*        (RWorkspace: need N) */
 | |
| 
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	ctrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], 
 | |
| 		ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
 | |
| 		rwork[1], n, &ierr);
 | |
|     }
 | |
| 
 | |
| /*     Compute condition numbers if desired */
 | |
| /*     (CWorkspace: need N*N+2*N unless SENSE = 'E') */
 | |
| /*     (RWorkspace: need 2*N unless SENSE = 'E') */
 | |
| 
 | |
|     if (! wntsnn) {
 | |
| 	ctrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
 | |
| 		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
 | |
| 		&work[iwrk], n, &rwork[1], &icond);
 | |
|     }
 | |
| 
 | |
|     if (wantvl) {
 | |
| 
 | |
| /*        Undo balancing of left eigenvectors */
 | |
| 
 | |
| 	cgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
 | |
| 		&ierr);
 | |
| 
 | |
| /*        Normalize left eigenvectors and make largest component real */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
 | |
| 	    csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
 | |
| 	    i__2 = *n;
 | |
| 	    for (k = 1; k <= i__2; ++k) {
 | |
| 		i__3 = k + i__ * vl_dim1;
 | |
| /* Computing 2nd power */
 | |
| 		r__1 = vl[i__3].r;
 | |
| /* Computing 2nd power */
 | |
| 		r__2 = r_imag(&vl[k + i__ * vl_dim1]);
 | |
| 		rwork[k] = r__1 * r__1 + r__2 * r__2;
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	    k = isamax_(n, &rwork[1], &c__1);
 | |
| 	    r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
 | |
| 	    r__1 = sqrt(rwork[k]);
 | |
| 	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
 | |
| 	    tmp.r = q__1.r, tmp.i = q__1.i;
 | |
| 	    cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
 | |
| 	    i__2 = k + i__ * vl_dim1;
 | |
| 	    i__3 = k + i__ * vl_dim1;
 | |
| 	    r__1 = vl[i__3].r;
 | |
| 	    q__1.r = r__1, q__1.i = 0.f;
 | |
| 	    vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
 | |
| /* L20: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (wantvr) {
 | |
| 
 | |
| /*        Undo balancing of right eigenvectors */
 | |
| 
 | |
| 	cgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
 | |
| 		&ierr);
 | |
| 
 | |
| /*        Normalize right eigenvectors and make largest component real */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
 | |
| 	    csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
 | |
| 	    i__2 = *n;
 | |
| 	    for (k = 1; k <= i__2; ++k) {
 | |
| 		i__3 = k + i__ * vr_dim1;
 | |
| /* Computing 2nd power */
 | |
| 		r__1 = vr[i__3].r;
 | |
| /* Computing 2nd power */
 | |
| 		r__2 = r_imag(&vr[k + i__ * vr_dim1]);
 | |
| 		rwork[k] = r__1 * r__1 + r__2 * r__2;
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	    k = isamax_(n, &rwork[1], &c__1);
 | |
| 	    r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
 | |
| 	    r__1 = sqrt(rwork[k]);
 | |
| 	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
 | |
| 	    tmp.r = q__1.r, tmp.i = q__1.i;
 | |
| 	    cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
 | |
| 	    i__2 = k + i__ * vr_dim1;
 | |
| 	    i__3 = k + i__ * vr_dim1;
 | |
| 	    r__1 = vr[i__3].r;
 | |
| 	    q__1.r = r__1, q__1.i = 0.f;
 | |
| 	    vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
 | |
| /* L40: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling if necessary */
 | |
| 
 | |
| L50:
 | |
|     if (scalea) {
 | |
| 	i__1 = *n - *info;
 | |
| /* Computing MAX */
 | |
| 	i__3 = *n - *info;
 | |
| 	i__2 = f2cmax(i__3,1);
 | |
| 	clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
 | |
| 		, &i__2, &ierr);
 | |
| 	if (*info == 0) {
 | |
| 	    if ((wntsnv || wntsnb) && icond == 0) {
 | |
| 		slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
 | |
| 			1], n, &ierr);
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *ilo - 1;
 | |
| 	    clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
 | |
| 		     &ierr);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     work[1].r = (real) maxwrk, work[1].i = 0.f;
 | |
|     return;
 | |
| 
 | |
| /*     End of CGEEVX */
 | |
| 
 | |
| } /* cgeevx_ */
 | |
| 
 |