996 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			996 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF,  WHTSVD,   &
 | |
|                          M, N, X, LDX, Y, LDY, NRNK, TOL,   &
 | |
|                          K, EIGS, Z, LDZ, RES, B,    LDB,   &
 | |
|                          W, LDW,  S, LDS, ZWORK,  LZWORK,   &
 | |
|                          RWORK, LRWORK, IWORK, LIWORK, INFO )
 | |
| !   March 2023
 | |
| !.....
 | |
|       USE                   iso_fortran_env
 | |
|       IMPLICIT NONE
 | |
|       INTEGER, PARAMETER :: WP = real32
 | |
| !.....
 | |
| !     Scalar arguments
 | |
|       CHARACTER, INTENT(IN)   :: JOBS,   JOBZ,  JOBR,  JOBF
 | |
|       INTEGER,   INTENT(IN)   :: WHTSVD, M, N,   LDX,  LDY, &
 | |
|                                  NRNK, LDZ, LDB, LDW,  LDS, &
 | |
|                                  LIWORK, LRWORK, LZWORK
 | |
|       INTEGER,       INTENT(OUT)  :: K, INFO
 | |
|       REAL(KIND=WP), INTENT(IN)   ::    TOL
 | |
| !     Array arguments
 | |
|       COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
 | |
|       COMPLEX(KIND=WP), INTENT(OUT)   :: Z(LDZ,*), B(LDB,*), &
 | |
|                                          W(LDW,*), S(LDS,*)
 | |
|       COMPLEX(KIND=WP), INTENT(OUT)   :: EIGS(*)
 | |
|       COMPLEX(KIND=WP), INTENT(OUT)   :: ZWORK(*)
 | |
|       REAL(KIND=WP),    INTENT(OUT)   :: RES(*)
 | |
|       REAL(KIND=WP),    INTENT(OUT)   :: RWORK(*)
 | |
|       INTEGER,          INTENT(OUT)   :: IWORK(*)
 | |
| !............................................................
 | |
| !     Purpose
 | |
| !     =======
 | |
| !     CGEDMD computes the Dynamic Mode Decomposition (DMD) for
 | |
| !     a pair of data snapshot matrices. For the input matrices
 | |
| !     X and Y such that Y = A*X with an unaccessible matrix
 | |
| !     A, CGEDMD computes a certain number of Ritz pairs of A using
 | |
| !     the standard Rayleigh-Ritz extraction from a subspace of
 | |
| !     range(X) that is determined using the leading left singular
 | |
| !     vectors of X. Optionally, CGEDMD returns the residuals
 | |
| !     of the computed Ritz pairs, the information needed for
 | |
| !     a refinement of the Ritz vectors, or the eigenvectors of
 | |
| !     the Exact DMD.
 | |
| !     For further details see the references listed
 | |
| !     below. For more details of the implementation see [3].
 | |
| !
 | |
| !     References
 | |
| !     ==========
 | |
| !     [1] P. Schmid: Dynamic mode decomposition of numerical
 | |
| !         and experimental data,
 | |
| !         Journal of Fluid Mechanics 656, 5-28, 2010.
 | |
| !     [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
 | |
| !         decompositions: analysis and enhancements,
 | |
| !         SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
 | |
| !     [3] Z. Drmac: A LAPACK implementation of the Dynamic
 | |
| !         Mode Decomposition I. Technical report. AIMDyn Inc.
 | |
| !         and LAPACK Working Note 298.
 | |
| !     [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
 | |
| !         Brunton, N. Kutz: On Dynamic Mode Decomposition:
 | |
| !         Theory and Applications, Journal of Computational
 | |
| !         Dynamics 1(2), 391 -421, 2014.
 | |
| !
 | |
| !......................................................................
 | |
| !     Developed and supported by:
 | |
| !     ===========================
 | |
| !     Developed and coded by Zlatko Drmac, Faculty of Science,
 | |
| !     University of Zagreb;  drmac@math.hr
 | |
| !     In cooperation with
 | |
| !     AIMdyn Inc., Santa Barbara, CA.
 | |
| !     and supported by
 | |
| !     - DARPA SBIR project "Koopman Operator-Based Forecasting
 | |
| !     for Nonstationary Processes from Near-Term, Limited
 | |
| !     Observational Data" Contract No: W31P4Q-21-C-0007
 | |
| !     - DARPA PAI project "Physics-Informed Machine Learning
 | |
| !     Methodologies" Contract No: HR0011-18-9-0033
 | |
| !     - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
 | |
| !     Framework for Space-Time Analysis of Process Dynamics"
 | |
| !     Contract No: HR0011-16-C-0116
 | |
| !     Any opinions, findings and conclusions or recommendations
 | |
| !     expressed in this material are those of the author and
 | |
| !     do not necessarily reflect the views of the DARPA SBIR
 | |
| !     Program Office
 | |
| !============================================================
 | |
| !     Distribution Statement A:
 | |
| !     Approved for Public Release, Distribution Unlimited.
 | |
| !     Cleared by DARPA on September 29, 2022
 | |
| !============================================================
 | |
| !......................................................................
 | |
| !     Arguments
 | |
| !     =========
 | |
| !     JOBS (input) CHARACTER*1
 | |
| !     Determines whether the initial data snapshots are scaled
 | |
| !     by a diagonal matrix.
 | |
| !     'S' :: The data snapshots matrices X and Y are multiplied
 | |
| !            with a diagonal matrix D so that X*D has unit
 | |
| !            nonzero columns (in the Euclidean 2-norm)
 | |
| !     'C' :: The snapshots are scaled as with the 'S' option.
 | |
| !            If it is found that an i-th column of X is zero
 | |
| !            vector and the corresponding i-th column of Y is
 | |
| !            non-zero, then the i-th column of Y is set to
 | |
| !            zero and a warning flag is raised.
 | |
| !     'Y' :: The data snapshots matrices X and Y are multiplied
 | |
| !            by a diagonal matrix D so that Y*D has unit
 | |
| !            nonzero columns (in the Euclidean 2-norm)
 | |
| !     'N' :: No data scaling.
 | |
| !.....
 | |
| !     JOBZ (input) CHARACTER*1
 | |
| !     Determines whether the eigenvectors (Koopman modes) will
 | |
| !     be computed.
 | |
| !     'V' :: The eigenvectors (Koopman modes) will be computed
 | |
| !            and returned in the matrix Z.
 | |
| !            See the description of Z.
 | |
| !     'F' :: The eigenvectors (Koopman modes) will be returned
 | |
| !            in factored form as the product X(:,1:K)*W, where X
 | |
| !            contains a POD basis (leading left singular vectors
 | |
| !            of the data matrix X) and W contains the eigenvectors
 | |
| !            of the corresponding Rayleigh quotient.
 | |
| !            See the descriptions of K, X, W, Z.
 | |
| !     'N' :: The eigenvectors are not computed.
 | |
| !.....
 | |
| !     JOBR (input) CHARACTER*1
 | |
| !     Determines whether to compute the residuals.
 | |
| !     'R' :: The residuals for the computed eigenpairs will be
 | |
| !            computed and stored in the array RES.
 | |
| !            See the description of RES.
 | |
| !            For this option to be legal, JOBZ must be 'V'.
 | |
| !     'N' :: The residuals are not computed.
 | |
| !.....
 | |
| !     JOBF (input) CHARACTER*1
 | |
| !     Specifies whether to store information needed for post-
 | |
| !     processing (e.g. computing refined Ritz vectors)
 | |
| !     'R' :: The matrix needed for the refinement of the Ritz
 | |
| !            vectors is computed and stored in the array B.
 | |
| !            See the description of B.
 | |
| !     'E' :: The unscaled eigenvectors of the Exact DMD are
 | |
| !            computed and returned in the array B. See the
 | |
| !            description of B.
 | |
| !     'N' :: No eigenvector refinement data is computed.
 | |
| !.....
 | |
| !     WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
 | |
| !     Allows for a selection of the SVD algorithm from the
 | |
| !     LAPACK library.
 | |
| !     1 :: CGESVD (the QR SVD algorithm)
 | |
| !     2 :: CGESDD (the Divide and Conquer algorithm; if enough
 | |
| !          workspace available, this is the fastest option)
 | |
| !     3 :: CGESVDQ (the preconditioned QR SVD  ; this and 4
 | |
| !          are the most accurate options)
 | |
| !     4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
 | |
| !          are the most accurate options)
 | |
| !     For the four methods above, a significant difference in
 | |
| !     the accuracy of small singular values is possible if
 | |
| !     the snapshots vary in norm so that X is severely
 | |
| !     ill-conditioned. If small (smaller than EPS*||X||)
 | |
| !     singular values are of interest and JOBS=='N',  then
 | |
| !     the options (3, 4) give the most accurate results, where
 | |
| !     the option 4 is slightly better and with stronger
 | |
| !     theoretical background.
 | |
| !     If JOBS=='S', i.e. the columns of X will be normalized,
 | |
| !     then all methods give nearly equally accurate results.
 | |
| !.....
 | |
| !     M (input) INTEGER, M>= 0
 | |
| !     The state space dimension (the row dimension of X, Y).
 | |
| !.....
 | |
| !     N (input) INTEGER, 0 <= N <= M
 | |
| !     The number of data snapshot pairs
 | |
| !     (the number of columns of X and Y).
 | |
| !.....
 | |
| !     X (input/output) COMPLEX(KIND=WP) M-by-N array
 | |
| !   > On entry, X contains the data snapshot matrix X. It is
 | |
| !     assumed that the column norms of X are in the range of
 | |
| !     the normalized floating point numbers.
 | |
| !   < On exit, the leading K columns of X contain a POD basis,
 | |
| !     i.e. the leading K left singular vectors of the input
 | |
| !     data matrix X, U(:,1:K). All N columns of X contain all
 | |
| !     left singular vectors of the input matrix X.
 | |
| !     See the descriptions of K, Z and W.
 | |
| !.....
 | |
| !     LDX (input) INTEGER, LDX >= M
 | |
| !     The leading dimension of the array X.
 | |
| !.....
 | |
| !     Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
 | |
| !   > On entry, Y contains the data snapshot matrix Y
 | |
| !   < On exit,
 | |
| !     If JOBR == 'R', the leading K columns of Y  contain
 | |
| !     the residual vectors for the computed Ritz pairs.
 | |
| !     See the description of RES.
 | |
| !     If JOBR == 'N', Y contains the original input data,
 | |
| !                     scaled according to the value of JOBS.
 | |
| !.....
 | |
| !     LDY (input) INTEGER , LDY >= M
 | |
| !     The leading dimension of the array Y.
 | |
| !.....
 | |
| !     NRNK (input) INTEGER
 | |
| !     Determines the mode how to compute the numerical rank,
 | |
| !     i.e. how to truncate small singular values of the input
 | |
| !     matrix X. On input, if
 | |
| !     NRNK = -1 :: i-th singular value sigma(i) is truncated
 | |
| !                  if sigma(i) <= TOL*sigma(1)
 | |
| !                  This option is recommended.
 | |
| !     NRNK = -2 :: i-th singular value sigma(i) is truncated
 | |
| !                  if sigma(i) <= TOL*sigma(i-1)
 | |
| !                  This option is included for R&D purposes.
 | |
| !                  It requires highly accurate SVD, which
 | |
| !                  may not be feasible.
 | |
| !     The numerical rank can be enforced by using positive
 | |
| !     value of NRNK as follows:
 | |
| !     0 < NRNK <= N :: at most NRNK largest singular values
 | |
| !     will be used. If the number of the computed nonzero
 | |
| !     singular values is less than NRNK, then only those
 | |
| !     nonzero values will be used and the actually used
 | |
| !     dimension is less than NRNK. The actual number of
 | |
| !     the nonzero singular values is returned in the variable
 | |
| !     K. See the descriptions of TOL and  K.
 | |
| !.....
 | |
| !     TOL (input) REAL(KIND=WP), 0 <= TOL < 1
 | |
| !     The tolerance for truncating small singular values.
 | |
| !     See the description of NRNK.
 | |
| !.....
 | |
| !     K (output) INTEGER,  0 <= K <= N
 | |
| !     The dimension of the POD basis for the data snapshot
 | |
| !     matrix X and the number of the computed Ritz pairs.
 | |
| !     The value of K is determined according to the rule set
 | |
| !     by the parameters NRNK and TOL.
 | |
| !     See the descriptions of NRNK and TOL.
 | |
| !.....
 | |
| !     EIGS (output) COMPLEX(KIND=WP) N-by-1 array
 | |
| !     The leading K (K<=N) entries of EIGS contain
 | |
| !     the computed eigenvalues (Ritz values).
 | |
| !     See the descriptions of K, and Z.
 | |
| !.....
 | |
| !     Z (workspace/output) COMPLEX(KIND=WP)  M-by-N array
 | |
| !     If JOBZ =='V' then Z contains the  Ritz vectors.  Z(:,i)
 | |
| !     is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
 | |
| !     If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
 | |
| !     the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
 | |
| !     is an eigenvector corresponding to EIGS(i). The columns
 | |
| !     of W(1:k,1:K) are the computed eigenvectors of the
 | |
| !     K-by-K Rayleigh quotient.
 | |
| !     See the descriptions of EIGS, X and W.
 | |
| !.....
 | |
| !     LDZ (input) INTEGER , LDZ >= M
 | |
| !     The leading dimension of the array Z.
 | |
| !.....
 | |
| !     RES (output) REAL(KIND=WP) N-by-1 array
 | |
| !     RES(1:K) contains the residuals for the K computed
 | |
| !     Ritz pairs,
 | |
| !     RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
 | |
| !     See the description of EIGS and Z.
 | |
| !.....
 | |
| !     B (output) COMPLEX(KIND=WP)  M-by-N array.
 | |
| !     IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
 | |
| !     be used for computing the refined vectors; see further
 | |
| !     details in the provided references.
 | |
| !     If JOBF == 'E', B(1:M,1:K) contains
 | |
| !     A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
 | |
| !     Exact DMD, up to scaling by the inverse eigenvalues.
 | |
| !     If JOBF =='N', then B is not referenced.
 | |
| !     See the descriptions of X, W, K.
 | |
| !.....
 | |
| !     LDB (input) INTEGER, LDB >= M
 | |
| !     The leading dimension of the array B.
 | |
| !.....
 | |
| !     W (workspace/output) COMPLEX(KIND=WP) N-by-N array
 | |
| !     On exit, W(1:K,1:K) contains the K computed
 | |
| !     eigenvectors of the matrix Rayleigh quotient.
 | |
| !     The Ritz vectors (returned in Z) are the
 | |
| !     product of X (containing a POD basis for the input
 | |
| !     matrix X) and W. See the descriptions of K, S, X and Z.
 | |
| !     W is also used as a workspace to temporarily store the
 | |
| !     right singular vectors of X.
 | |
| !.....
 | |
| !     LDW (input) INTEGER, LDW >= N
 | |
| !     The leading dimension of the array W.
 | |
| !.....
 | |
| !     S (workspace/output) COMPLEX(KIND=WP) N-by-N array
 | |
| !     The array S(1:K,1:K) is used for the matrix Rayleigh
 | |
| !     quotient. This content is overwritten during
 | |
| !     the eigenvalue decomposition by CGEEV.
 | |
| !     See the description of K.
 | |
| !.....
 | |
| !     LDS (input) INTEGER, LDS >= N
 | |
| !     The leading dimension of the array S.
 | |
| !.....
 | |
| !     ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
 | |
| !     ZWORK is used as complex workspace in the complex SVD, as
 | |
| !     specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing
 | |
| !     the eigenvalues of a Rayleigh quotient.
 | |
| !     If the call to CGEDMD is only workspace query, then
 | |
| !     ZWORK(1) contains the minimal complex workspace length and
 | |
| !     ZWORK(2) is the optimal complex workspace length.
 | |
| !     Hence, the length of work is at least 2.
 | |
| !     See the description of LZWORK.
 | |
| !.....
 | |
| !     LZWORK (input) INTEGER
 | |
| !     The minimal length of the workspace vector ZWORK.
 | |
| !     LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV),
 | |
| !     where LZWORK_CGEEV = MAX( 1, 2*N )  and the minimal
 | |
| !     LZWORK_SVD is calculated as follows
 | |
| !     If WHTSVD == 1 :: CGESVD ::
 | |
| !        LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
 | |
| !     If WHTSVD == 2 :: CGESDD ::
 | |
| !        LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
 | |
| !     If WHTSVD == 3 :: CGESVDQ ::
 | |
| !        LZWORK_SVD = obtainable by a query
 | |
| !     If WHTSVD == 4 :: CGEJSV ::
 | |
| !        LZWORK_SVD = obtainable by a query
 | |
| !     If on entry LZWORK = -1, then a workspace query is
 | |
| !     assumed and the procedure only computes the minimal
 | |
| !     and the optimal workspace lengths and returns them in
 | |
| !     LZWORK(1) and LZWORK(2), respectively.
 | |
| !.....
 | |
| !     RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
 | |
| !     On exit, RWORK(1:N) contains the singular values of
 | |
| !     X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
 | |
| !     If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
 | |
| !     scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
 | |
| !     and Y to avoid overflow in the SVD of X.
 | |
| !     This may be of interest if the scaling option is off
 | |
| !     and as many as possible smallest eigenvalues are
 | |
| !     desired to the highest feasible accuracy.
 | |
| !     If the call to CGEDMD is only workspace query, then
 | |
| !     RWORK(1) contains the minimal workspace length.
 | |
| !     See the description of LRWORK.
 | |
| !.....
 | |
| !     LRWORK (input) INTEGER
 | |
| !     The minimal length of the workspace vector RWORK.
 | |
| !     LRWORK is calculated as follows:
 | |
| !     LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where
 | |
| !     LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
 | |
| !     for the SVD subroutine determined by the input parameter
 | |
| !     WHTSVD.
 | |
| !     If WHTSVD == 1 :: CGESVD ::
 | |
| !        LRWORK_SVD = 5*MIN(M,N)
 | |
| !     If WHTSVD == 2 :: CGESDD ::
 | |
| !        LRWORK_SVD =  MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
 | |
| !        2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
 | |
| !     If WHTSVD == 3 :: CGESVDQ ::
 | |
| !        LRWORK_SVD = obtainable by a query
 | |
| !     If WHTSVD == 4 :: CGEJSV ::
 | |
| !        LRWORK_SVD = obtainable by a query
 | |
| !     If on entry LRWORK = -1, then a workspace query is
 | |
| !     assumed and the procedure only computes the minimal
 | |
| !     real workspace length and returns it in RWORK(1).
 | |
| !.....
 | |
| !     IWORK (workspace/output) INTEGER LIWORK-by-1 array
 | |
| !     Workspace that is required only if WHTSVD equals
 | |
| !     2 , 3 or 4. (See the description of WHTSVD).
 | |
| !     If on entry LWORK =-1 or LIWORK=-1, then the
 | |
| !     minimal length of IWORK is computed and returned in
 | |
| !     IWORK(1). See the description of LIWORK.
 | |
| !.....
 | |
| !     LIWORK (input) INTEGER
 | |
| !     The minimal length of the workspace vector IWORK.
 | |
| !     If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
 | |
| !     If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
 | |
| !     If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
 | |
| !     If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
 | |
| !     If on entry LIWORK = -1, then a workspace query is
 | |
| !     assumed and the procedure only computes the minimal
 | |
| !     and the optimal workspace lengths for  ZWORK, RWORK and
 | |
| !     IWORK. See the descriptions of ZWORK, RWORK and IWORK.
 | |
| !.....
 | |
| !     INFO (output) INTEGER
 | |
| !     -i < 0 :: On entry, the i-th argument had an
 | |
| !               illegal value
 | |
| !        = 0 :: Successful return.
 | |
| !        = 1 :: Void input. Quick exit (M=0 or N=0).
 | |
| !        = 2 :: The SVD computation of X did not converge.
 | |
| !               Suggestion: Check the input data and/or
 | |
| !               repeat with different WHTSVD.
 | |
| !        = 3 :: The computation of the eigenvalues did not
 | |
| !               converge.
 | |
| !        = 4 :: If data scaling was requested on input and
 | |
| !               the procedure found inconsistency in the data
 | |
| !               such that for some column index i,
 | |
| !               X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
 | |
| !               to zero if JOBS=='C'. The computation proceeds
 | |
| !               with original or modified data and warning
 | |
| !               flag is set with INFO=4.
 | |
| !.............................................................
 | |
| !.............................................................
 | |
| !     Parameters
 | |
| !     ~~~~~~~~~~
 | |
|       REAL(KIND=WP), PARAMETER ::  ONE = 1.0_WP
 | |
|       REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
 | |
|       COMPLEX(KIND=WP), PARAMETER ::  ZONE = ( 1.0_WP, 0.0_WP )
 | |
|       COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
 | |
| 
 | |
| !     Local scalars
 | |
| !     ~~~~~~~~~~~~~
 | |
|       REAL(KIND=WP) :: OFL,   ROOTSC, SCALE,  SMALL,   &
 | |
|                        SSUM,  XSCL1,  XSCL2
 | |
|       INTEGER       ::  i,  j, IMINWR,  INFO1, INFO2,   &
 | |
|                         LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
 | |
|                        LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
 | |
|                        MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
 | |
|                        OLWORK, MLRWRK
 | |
|       LOGICAL       ::  BADXY, LQUERY, SCCOLX, SCCOLY, &
 | |
|                         WNTEX, WNTREF, WNTRES, WNTVEC
 | |
|       CHARACTER     ::  JOBZL, T_OR_N
 | |
|       CHARACTER     ::  JSVOPT
 | |
| !
 | |
| !     Local arrays
 | |
| !     ~~~~~~~~~~~~
 | |
|       REAL(KIND=WP) :: RDUMMY(2)
 | |
| 
 | |
| !     External functions (BLAS and LAPACK)
 | |
| !     ~~~~~~~~~~~~~~~~~
 | |
|       REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2
 | |
|       EXTERNAL      CLANGE, SLAMCH, SCNRM2, ICAMAX
 | |
|       INTEGER                               ICAMAX
 | |
|       LOGICAL       SISNAN, LSAME
 | |
|       EXTERNAL      SISNAN, LSAME
 | |
| 
 | |
| !     External subroutines (BLAS and LAPACK)
 | |
| !     ~~~~~~~~~~~~~~~~~~~~
 | |
|       EXTERNAL      CAXPY,  CGEMM,  CSSCAL
 | |
|       EXTERNAL      CGEEV,  CGEJSV, CGESDD, CGESVD, CGESVDQ, &
 | |
|                     CLACPY, CLASCL, CLASSQ, XERBLA
 | |
| 
 | |
| !     Intrinsic functions
 | |
| !     ~~~~~~~~~~~~~~~~~~~
 | |
|       INTRINSIC     FLOAT, INT, MAX, SQRT
 | |
| !............................................................
 | |
| !
 | |
| !    Test the input arguments
 | |
| !
 | |
|       WNTRES = LSAME(JOBR,'R')
 | |
|       SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
 | |
|       SCCOLY = LSAME(JOBS,'Y')
 | |
|       WNTVEC = LSAME(JOBZ,'V')
 | |
|       WNTREF = LSAME(JOBF,'R')
 | |
|       WNTEX  = LSAME(JOBF,'E')
 | |
|       INFO   = 0
 | |
|       LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
 | |
|                                   .OR. ( LRWORK == -1 ) )
 | |
| !
 | |
|       IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
 | |
|                                   LSAME(JOBS,'N')) )   THEN
 | |
|           INFO = -1
 | |
|       ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N')        &
 | |
|                               .OR. LSAME(JOBZ,'F')) )  THEN
 | |
|           INFO = -2
 | |
|       ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR.  &
 | |
|                 ( WNTRES .AND. (.NOT.WNTVEC) ) )       THEN
 | |
|           INFO = -3
 | |
|       ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR.             &
 | |
|                 LSAME(JOBF,'N') ) )                    THEN
 | |
|           INFO = -4
 | |
|       ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR.  &
 | |
|                       (WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
 | |
|           INFO = -5
 | |
|       ELSE IF ( M < 0 )   THEN
 | |
|           INFO = -6
 | |
|       ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
 | |
|           INFO = -7
 | |
|       ELSE IF ( LDX < M ) THEN
 | |
|           INFO = -9
 | |
|       ELSE IF ( LDY < M ) THEN
 | |
|           INFO = -11
 | |
|       ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
 | |
|                 ((NRNK >= 1).AND.(NRNK <=N ))) )      THEN
 | |
|           INFO = -12
 | |
|       ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) )  THEN
 | |
|           INFO = -13
 | |
|       ELSE IF ( LDZ < M ) THEN
 | |
|           INFO = -17
 | |
|       ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
 | |
|           INFO = -20
 | |
|       ELSE IF ( LDW < N ) THEN
 | |
|           INFO = -22
 | |
|       ELSE IF ( LDS < N ) THEN
 | |
|           INFO = -24
 | |
|       END IF
 | |
| !
 | |
|       IF ( INFO == 0 ) THEN
 | |
|           ! Compute the minimal and the optimal workspace
 | |
|           ! requirements. Simulate running the code and
 | |
|           ! determine minimal and optimal sizes of the
 | |
|           ! workspace at any moment of the run.
 | |
|          IF ( N == 0 ) THEN
 | |
|              ! Quick return. All output except K is void.
 | |
|              ! INFO=1 signals the void input.
 | |
|              ! In case of a workspace query, the default
 | |
|              ! minimal workspace lengths are returned.
 | |
|             IF ( LQUERY ) THEN
 | |
|                 IWORK(1) = 1
 | |
|                 RWORK(1) = 1
 | |
|                 ZWORK(1) = 2
 | |
|                 ZWORK(2) = 2
 | |
|             ELSE
 | |
|                K   =  0
 | |
|             END IF
 | |
|             INFO = 1
 | |
|             RETURN
 | |
|          END IF
 | |
| 
 | |
|          IMINWR = 1
 | |
|          MLRWRK = MAX(1,N)
 | |
|          MLWORK = 2
 | |
|          OLWORK = 2
 | |
|          SELECT CASE ( WHTSVD )
 | |
|          CASE (1)
 | |
|              ! The following is specified as the minimal
 | |
|              ! length of WORK in the definition of CGESVD:
 | |
|              ! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
 | |
|              MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
 | |
|              MLWORK = MAX(MLWORK,MWRSVD)
 | |
|              MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
 | |
|              IF ( LQUERY ) THEN
 | |
|                 CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
 | |
|                      B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
 | |
|                 LWRSVD = INT( ZWORK(1) )
 | |
|                 OLWORK = MAX(OLWORK,LWRSVD)
 | |
|              END IF
 | |
|          CASE (2)
 | |
|              ! The following is specified as the minimal
 | |
|              ! length of WORK in the definition of CGESDD:
 | |
|              ! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
 | |
|              ! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
 | |
|              ! In LAPACK 3.10.1 RWORK is defined differently.
 | |
|              ! Below we take max over the two versions.
 | |
|              ! IMINWR = 8*MIN(M,N)
 | |
|              MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
 | |
|              MLWORK = MAX(MLWORK,MWRSDD)
 | |
|              IMINWR = 8*MIN(M,N)
 | |
|              MLRWRK = MAX( MLRWRK,  N +                    &
 | |
|                       MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
 | |
|                            5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
 | |
|                            2*MAX(M,N)*MIN(M,N)+            &
 | |
|                            2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
 | |
|              IF ( LQUERY ) THEN
 | |
|                 CALL CGESDD( 'O', M, N, X, LDX, RWORK, B,     &
 | |
|                      LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
 | |
|                 LWRSDD = MAX(MWRSDD,INT( ZWORK(1) ))
 | |
|                 OLWORK = MAX(OLWORK,LWRSDD)
 | |
|              END IF
 | |
|          CASE (3)
 | |
|              CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
 | |
|                   X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK,  &
 | |
|                   IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
 | |
|              IMINWR = IWORK(1)
 | |
|              MWRSVQ = INT(ZWORK(2))
 | |
|              MLWORK = MAX(MLWORK,MWRSVQ)
 | |
|              MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1)))
 | |
|              IF ( LQUERY ) THEN
 | |
|                 LWRSVQ = INT(ZWORK(1))
 | |
|                 OLWORK = MAX(OLWORK,LWRSVQ)
 | |
|              END IF
 | |
|          CASE (4)
 | |
|              JSVOPT = 'J'
 | |
|              CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
 | |
|                    N, X, LDX, RWORK, Z, LDZ, W, LDW,       &
 | |
|                    ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
 | |
|              IMINWR = IWORK(1)
 | |
|              MWRSVJ = INT(ZWORK(2))
 | |
|              MLWORK = MAX(MLWORK,MWRSVJ)
 | |
|              MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
 | |
|              IF ( LQUERY ) THEN
 | |
|                 LWRSVJ = INT(ZWORK(1))
 | |
|                 OLWORK = MAX(OLWORK,LWRSVJ)
 | |
|              END IF
 | |
|          END SELECT
 | |
|          IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
 | |
|              JOBZL = 'V'
 | |
|          ELSE
 | |
|              JOBZL = 'N'
 | |
|          END IF
 | |
|          ! Workspace calculation to the CGEEV call
 | |
|          MWRKEV = MAX( 1, 2*N )
 | |
|          MLWORK = MAX(MLWORK,MWRKEV)
 | |
|          MLRWRK = MAX(MLRWRK,N+2*N)
 | |
|          IF ( LQUERY ) THEN
 | |
|              CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
 | |
|               W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL
 | |
|                 LWRKEV = INT(ZWORK(1))
 | |
|                 OLWORK = MAX( OLWORK, LWRKEV )
 | |
|                 OLWORK = MAX( 2, OLWORK )
 | |
|          END IF
 | |
| !
 | |
|          IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
 | |
|          IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
 | |
|          IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
 | |
| 
 | |
|       END IF
 | |
| !
 | |
|       IF( INFO /= 0 ) THEN
 | |
|          CALL XERBLA( 'CGEDMD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF ( LQUERY ) THEN
 | |
| !     Return minimal and optimal workspace sizes
 | |
|           IWORK(1) = IMINWR
 | |
|           RWORK(1) = MLRWRK
 | |
|           ZWORK(1) = MLWORK
 | |
|           ZWORK(2) = OLWORK
 | |
|           RETURN
 | |
|       END IF
 | |
| !............................................................
 | |
| !
 | |
|       OFL   = SLAMCH('O')*SLAMCH('P')
 | |
|       SMALL = SLAMCH('S')
 | |
|       BADXY = .FALSE.
 | |
| !
 | |
| !     <1> Optional scaling of the snapshots (columns of X, Y)
 | |
| !     ==========================================================
 | |
|       IF ( SCCOLX ) THEN
 | |
|           ! The columns of X will be normalized.
 | |
|           ! To prevent overflows, the column norms of X are
 | |
|           ! carefully computed using CLASSQ.
 | |
|           K = 0
 | |
|           DO i = 1, N
 | |
|             !WORK(i) = SCNRM2( M, X(1,i), 1 )
 | |
|             SCALE  = ZERO
 | |
|             CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM )
 | |
|             IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
 | |
|                 K    =  0
 | |
|                 INFO = -8
 | |
|                 CALL XERBLA('CGEDMD',-INFO)
 | |
|             END IF
 | |
|             IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
 | |
|                ROOTSC = SQRT(SSUM)
 | |
|                IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
 | |
| !                 Norm of X(:,i) overflows. First, X(:,i)
 | |
| !                 is scaled by
 | |
| !                 ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
 | |
| !                 Next, the norm of X(:,i) is stored without
 | |
| !                 overflow as WORK(i) = - SCALE * (ROOTSC/M),
 | |
| !                 the minus sign indicating the 1/M factor.
 | |
| !                 Scaling is performed without overflow, and
 | |
| !                 underflow may occur in the smallest entries
 | |
| !                 of X(:,i). The relative backward and forward
 | |
| !                 errors are small in the ell_2 norm.
 | |
|                   CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
 | |
|                                M, 1, X(1,i), LDX, INFO2 )
 | |
|                   RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
 | |
|                ELSE
 | |
| !                 X(:,i) will be scaled to unit 2-norm
 | |
|                   RWORK(i) =   SCALE * ROOTSC
 | |
|                   CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
 | |
|                                X(1,i), LDX, INFO2 )             ! LAPACK CALL
 | |
| !                 X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i)          ! INTRINSIC
 | |
|                END IF
 | |
|             ELSE
 | |
|                RWORK(i) = ZERO
 | |
|                K = K + 1
 | |
|             END IF
 | |
|           END DO
 | |
|           IF ( K == N ) THEN
 | |
|           ! All columns of X are zero. Return error code -8.
 | |
|           ! (the 8th input variable had an illegal value)
 | |
|           K = 0
 | |
|           INFO = -8
 | |
|           CALL XERBLA('CGEDMD',-INFO)
 | |
|           RETURN
 | |
|           END IF
 | |
|           DO i = 1, N
 | |
| !           Now, apply the same scaling to the columns of Y.
 | |
|             IF ( RWORK(i) >  ZERO ) THEN
 | |
|                 CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL
 | |
| !               Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i)      ! INTRINSIC
 | |
|             ELSE IF ( RWORK(i) < ZERO ) THEN
 | |
|                 CALL CLASCL( 'G', 0, 0, -RWORK(i),          &
 | |
|                      ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
 | |
|             ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i ))  &
 | |
|                                             /= ZERO ) THEN
 | |
| !               X(:,i) is zero vector. For consistency,
 | |
| !               Y(:,i) should also be zero. If Y(:,i) is not
 | |
| !               zero, then the data might be inconsistent or
 | |
| !               corrupted. If JOBS == 'C', Y(:,i) is set to
 | |
| !               zero and a warning flag is raised.
 | |
| !               The computation continues but the
 | |
| !               situation will be reported in the output.
 | |
|                 BADXY = .TRUE.
 | |
|                 IF ( LSAME(JOBS,'C')) &
 | |
|                 CALL CSSCAL( M, ZERO, Y(1,i), 1 )  ! BLAS CALL
 | |
|             END IF
 | |
|           END DO
 | |
|       END IF
 | |
|   !
 | |
|       IF ( SCCOLY ) THEN
 | |
|           ! The columns of Y will be normalized.
 | |
|           ! To prevent overflows, the column norms of Y are
 | |
|           ! carefully computed using CLASSQ.
 | |
|           DO i = 1, N
 | |
|             !RWORK(i) = SCNRM2( M, Y(1,i), 1 )
 | |
|             SCALE  = ZERO
 | |
|             CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM )
 | |
|             IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN
 | |
|                 K    =  0
 | |
|                 INFO = -10
 | |
|                 CALL XERBLA('CGEDMD',-INFO)
 | |
|             END IF
 | |
|             IF ( SCALE /= ZERO  .AND. (SSUM /= ZERO) ) THEN
 | |
|                ROOTSC = SQRT(SSUM)
 | |
|                IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
 | |
| !                 Norm of Y(:,i) overflows. First, Y(:,i)
 | |
| !                 is scaled by
 | |
| !                 ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
 | |
| !                 Next, the norm of Y(:,i) is stored without
 | |
| !                 overflow as RWORK(i) = - SCALE * (ROOTSC/M),
 | |
| !                 the minus sign indicating the 1/M factor.
 | |
| !                 Scaling is performed without overflow, and
 | |
| !                 underflow may occur in the smallest entries
 | |
| !                 of Y(:,i). The relative backward and forward
 | |
| !                 errors are small in the ell_2 norm.
 | |
|                   CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
 | |
|                                M, 1, Y(1,i), LDY, INFO2 )
 | |
|                   RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) )
 | |
|                ELSE
 | |
| !                 Y(:,i) will be scaled to unit 2-norm
 | |
|                   RWORK(i) =   SCALE * ROOTSC
 | |
|                   CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
 | |
|                                Y(1,i), LDY, INFO2 )              ! LAPACK CALL
 | |
| !                 Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i)          ! INTRINSIC
 | |
|                END IF
 | |
|             ELSE
 | |
|                RWORK(i) = ZERO
 | |
|             END IF
 | |
|          END DO
 | |
|          DO i = 1, N
 | |
| !           Now, apply the same scaling to the columns of X.
 | |
|             IF ( RWORK(i) >  ZERO ) THEN
 | |
|                 CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 )  ! BLAS CALL
 | |
| !               X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i)      ! INTRINSIC
 | |
|             ELSE IF ( RWORK(i) < ZERO ) THEN
 | |
|                 CALL CLASCL( 'G', 0, 0, -RWORK(i),          &
 | |
|                      ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
 | |
|             ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i ))  &
 | |
|                                            /= ZERO ) THEN
 | |
| !               Y(:,i) is zero vector.  If X(:,i) is not
 | |
| !               zero, then a warning flag is raised.
 | |
| !               The computation continues but the
 | |
| !               situation will be reported in the output.
 | |
|                 BADXY = .TRUE.
 | |
|             END IF
 | |
|          END DO
 | |
|        END IF
 | |
| !
 | |
| !     <2> SVD of the data snapshot matrix X.
 | |
| !     =====================================
 | |
| !     The left singular vectors are stored in the array X.
 | |
| !     The right singular vectors are in the array W.
 | |
| !     The array W will later on contain the eigenvectors
 | |
| !     of a Rayleigh quotient.
 | |
|       NUMRNK = N
 | |
|       SELECT CASE ( WHTSVD )
 | |
|          CASE (1)
 | |
|              CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
 | |
|                   LDB, W, LDW, ZWORK, LZWORK,  RWORK(N+1), INFO1 ) ! LAPACK CALL
 | |
|              T_OR_N = 'C'
 | |
|          CASE (2)
 | |
|             CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
 | |
|                  LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 )   ! LAPACK CALL
 | |
|             T_OR_N = 'C'
 | |
|          CASE (3)
 | |
|               CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
 | |
|                    X, LDX, RWORK, Z, LDZ, W, LDW, &
 | |
|                    NUMRNK, IWORK, LIWORK, ZWORK,     &
 | |
|                    LZWORK, RWORK(N+1), LRWORK-N, INFO1)     ! LAPACK CALL
 | |
|               CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX )   ! LAPACK CALL
 | |
|          T_OR_N = 'C'
 | |
|          CASE (4)
 | |
|               CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
 | |
|                    N, X, LDX, RWORK, Z, LDZ, W, LDW, &
 | |
|                    ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 )    ! LAPACK CALL
 | |
|               CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX )   ! LAPACK CALL
 | |
|               T_OR_N = 'N'
 | |
|               XSCL1 = RWORK(N+1)
 | |
|               XSCL2 = RWORK(N+2)
 | |
|               IF ( XSCL1 /=  XSCL2 ) THEN
 | |
|                  ! This is an exceptional situation. If the
 | |
|                  ! data matrices are not scaled and the
 | |
|                  ! largest singular value of X overflows.
 | |
|                  ! In that case CGEJSV can return the SVD
 | |
|                  ! in scaled form. The scaling factor can be used
 | |
|                  ! to rescale the data (X and Y).
 | |
|                  CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2  )
 | |
|               END IF
 | |
|       END SELECT
 | |
| !
 | |
|       IF ( INFO1 > 0 ) THEN
 | |
|          ! The SVD selected subroutine did not converge.
 | |
|          ! Return with an error code.
 | |
|          INFO = 2
 | |
|          RETURN
 | |
|       END IF
 | |
| !
 | |
|       IF ( RWORK(1) == ZERO ) THEN
 | |
|           ! The largest computed singular value of (scaled)
 | |
|           ! X is zero. Return error code -8
 | |
|           ! (the 8th input variable had an illegal value).
 | |
|           K = 0
 | |
|           INFO = -8
 | |
|           CALL XERBLA('CGEDMD',-INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| !
 | |
|       !<3> Determine the numerical rank of the data
 | |
|       !    snapshots matrix X. This depends on the
 | |
|       !    parameters NRNK and TOL.
 | |
| 
 | |
|       SELECT CASE ( NRNK )
 | |
|           CASE ( -1 )
 | |
|                K = 1
 | |
|                DO i = 2, NUMRNK
 | |
|                  IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
 | |
|                       ( RWORK(i) <= SMALL ) ) EXIT
 | |
|                  K = K + 1
 | |
|                END DO
 | |
|           CASE ( -2 )
 | |
|                K = 1
 | |
|                DO i = 1, NUMRNK-1
 | |
|                  IF ( ( RWORK(i+1) <= RWORK(i)*TOL  ) .OR. &
 | |
|                       ( RWORK(i) <= SMALL ) ) EXIT
 | |
|                  K = K + 1
 | |
|                END DO
 | |
|           CASE DEFAULT
 | |
|                K = 1
 | |
|                DO i = 2, NRNK
 | |
|                   IF ( RWORK(i) <= SMALL ) EXIT
 | |
|                   K = K + 1
 | |
|                END DO
 | |
|           END SELECT
 | |
|       !   Now, U = X(1:M,1:K) is the SVD/POD basis for the
 | |
|       !   snapshot data in the input matrix X.
 | |
| 
 | |
|       !<4> Compute the Rayleigh quotient S = U^H * A * U.
 | |
|       !    Depending on the requested outputs, the computation
 | |
|       !    is organized to compute additional auxiliary
 | |
|       !    matrices (for the residuals and refinements).
 | |
|       !
 | |
|       !    In all formulas below, we need V_k*Sigma_k^(-1)
 | |
|       !    where either V_k is in W(1:N,1:K), or V_k^H is in
 | |
|       !    W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
 | |
|       IF ( LSAME(T_OR_N, 'N') ) THEN
 | |
|           DO i = 1, K
 | |
|            CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 )   ! BLAS CALL
 | |
|            ! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i)      ! INTRINSIC
 | |
|           END DO
 | |
|       ELSE
 | |
|           ! This non-unit stride access is due to the fact
 | |
|           ! that CGESVD, CGESVDQ and CGESDD return the
 | |
|           ! adjoint matrix of the right singular vectors.
 | |
|           !DO i = 1, K
 | |
|           ! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW )  ! BLAS CALL
 | |
|           ! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N)      ! INTRINSIC
 | |
|           !END DO
 | |
|           DO i = 1, K
 | |
|               RWORK(N+i) = ONE/RWORK(i)
 | |
|           END DO
 | |
|           DO j = 1, N
 | |
|              DO i = 1, K
 | |
|                  W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
 | |
|              END DO
 | |
|           END DO
 | |
|       END IF
 | |
| !
 | |
|       IF ( WNTREF ) THEN
 | |
|          !
 | |
|          ! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
 | |
|          ! for computing the refined Ritz vectors
 | |
|          ! (optionally, outside CGEDMD).
 | |
|           CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
 | |
|                       LDW, ZZERO, Z, LDZ )                       ! BLAS CALL
 | |
|           ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N)))  ! INTRINSIC, for T_OR_N=='T'
 | |
|           ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K))             ! INTRINSIC, for T_OR_N=='N'
 | |
|           !
 | |
|           ! At this point Z contains
 | |
|           ! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
 | |
|           ! this is needed for computing the residuals.
 | |
|           ! This matrix is  returned in the array B and
 | |
|           ! it can be used to compute refined Ritz vectors.
 | |
|           CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )   ! BLAS CALL
 | |
|           ! B(1:M,1:K) = Z(1:M,1:K)                  ! INTRINSIC
 | |
| 
 | |
|           CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
 | |
|                       LDZ, ZZERO, S, LDS )                       ! BLAS CALL
 | |
|           ! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
 | |
|           ! At this point S = U^H * A * U is the Rayleigh quotient.
 | |
|       ELSE
 | |
|         ! A * U(:,1:K) is not explicitly needed and the
 | |
|         ! computation is organized differently. The Rayleigh
 | |
|         ! quotient is computed more efficiently.
 | |
|         CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
 | |
|                    ZZERO, Z, LDZ )                                  ! BLAS CALL
 | |
|         ! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) )  ! INTRINSIC
 | |
|         !
 | |
|         CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
 | |
|                     LDW, ZZERO, S, LDS )                        ! BLAS CALL
 | |
|         ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
 | |
|         ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K)))          ! INTRINSIC, for T_OR_N=='N'
 | |
|         ! At this point S = U^H * A * U is the Rayleigh quotient.
 | |
|         ! If the residuals are requested, save scaled V_k into Z.
 | |
|         ! Recall that V_k or V_k^H is stored in W.
 | |
|         IF ( WNTRES .OR. WNTEX ) THEN
 | |
|           IF ( LSAME(T_OR_N, 'N') ) THEN
 | |
|               CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ )
 | |
|           ELSE
 | |
|               CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ )
 | |
|           END IF
 | |
|         END IF
 | |
|       END IF
 | |
| !
 | |
|       !<5> Compute the Ritz values and (if requested) the
 | |
|       !   right eigenvectors of the Rayleigh quotient.
 | |
|       !
 | |
|       CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, &
 | |
|            LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 )  ! LAPACK CALL
 | |
|       !
 | |
|       ! W(1:K,1:K) contains the eigenvectors of the Rayleigh
 | |
|       ! quotient.  See the description of Z.
 | |
|       ! Also, see the description of CGEEV.
 | |
|       IF ( INFO1 > 0 ) THEN
 | |
|          ! CGEEV failed to compute the eigenvalues and
 | |
|          ! eigenvectors of the Rayleigh quotient.
 | |
|          INFO = 3
 | |
|          RETURN
 | |
|       END IF
 | |
| !
 | |
|       ! <6> Compute the eigenvectors (if requested) and,
 | |
|       ! the residuals (if requested).
 | |
|       !
 | |
|       IF ( WNTVEC .OR. WNTEX ) THEN
 | |
|           IF ( WNTRES ) THEN
 | |
|               IF ( WNTREF ) THEN
 | |
|                 ! Here, if the refinement is requested, we have
 | |
|                 ! A*U(:,1:K) already computed and stored in Z.
 | |
|                 ! For the residuals, need Y = A * U(:,1;K) * W.
 | |
|                 CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
 | |
|                            LDW, ZZERO, Y, LDY )              ! BLAS CALL
 | |
|                 ! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K)       ! INTRINSIC
 | |
|                 ! This frees Z; Y contains A * U(:,1:K) * W.
 | |
|               ELSE
 | |
|                 ! Compute S = V_k * Sigma_k^(-1) * W, where
 | |
|                 ! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
 | |
|                 CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
 | |
|                            W, LDW, ZZERO, S, LDS)
 | |
|                 ! Then, compute Z = Y * S =
 | |
|                 ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
 | |
|                 ! = A * U(:,1:K) * W(1:K,1:K)
 | |
|                 CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
 | |
|                            LDS, ZZERO, Z, LDZ)
 | |
|                 ! Save a copy of Z into Y and free Z for holding
 | |
|                 ! the Ritz vectors.
 | |
|                 CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY )
 | |
|                 IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
 | |
|               END IF
 | |
|           ELSE IF ( WNTEX ) THEN
 | |
|               ! Compute S = V_k * Sigma_k^(-1) * W, where
 | |
|                 ! V_k * Sigma_k^(-1) is stored in Z
 | |
|                 CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
 | |
|                            W, LDW, ZZERO, S, LDS)
 | |
|                 ! Then, compute Z = Y * S =
 | |
|                 ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
 | |
|                 ! = A * U(:,1:K) * W(1:K,1:K)
 | |
|                 CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
 | |
|                            LDS, ZZERO, B, LDB)
 | |
|                 ! The above call replaces the following two calls
 | |
|                 ! that were used in the developing-testing phase.
 | |
|                 ! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
 | |
|                 !           LDS, ZZERO, Z, LDZ)
 | |
|                 ! Save a copy of Z into Y and free Z for holding
 | |
|                 ! the Ritz vectors.
 | |
|                 ! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB )
 | |
|           END IF
 | |
| !
 | |
|           ! Compute the Ritz vectors
 | |
|           IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
 | |
|                        ZZERO, Z, LDZ )                          ! BLAS CALL
 | |
|           ! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K))         ! INTRINSIC
 | |
| !
 | |
|           IF ( WNTRES ) THEN
 | |
|              DO i = 1, K
 | |
|                 CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 )       ! BLAS CALL
 | |
|                 ! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i)            ! INTRINSIC
 | |
|                 RES(i) = SCNRM2( M, Y(1,i), 1)                        ! BLAS CALL
 | |
|              END DO
 | |
|           END IF
 | |
|       END IF
 | |
| !
 | |
|       IF ( WHTSVD == 4 ) THEN
 | |
|           RWORK(N+1) = XSCL1
 | |
|           RWORK(N+2) = XSCL2
 | |
|       END IF
 | |
| !
 | |
| !     Successful exit.
 | |
|       IF ( .NOT. BADXY ) THEN
 | |
|          INFO = 0
 | |
|       ELSE
 | |
|          ! A warning on possible data inconsistency.
 | |
|          ! This should be a rare event.
 | |
|          INFO = 4
 | |
|       END IF
 | |
| !............................................................
 | |
|       RETURN
 | |
| !     ......
 | |
|       END SUBROUTINE CGEDMD
 | |
| 
 |