1171 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1171 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {1.f,0.f};
 | |
| static integer c__1 = 1;
 | |
| static integer c__65 = 65;
 | |
| 
 | |
| /* > \brief \b CGBTRF */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGBTRF + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtrf.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtrf.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtrf.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, KL, KU, LDAB, M, N */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       COMPLEX            AB( LDAB, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CGBTRF computes an LU factorization of a complex m-by-n band matrix A */
 | |
| /* > using partial pivoting with row interchanges. */
 | |
| /* > */
 | |
| /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >          The number of subdiagonals within the band of A.  KL >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >          The number of superdiagonals within the band of A.  KU >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is COMPLEX array, dimension (LDAB,N) */
 | |
| /* >          On entry, the matrix A in band storage, in rows KL+1 to */
 | |
| /* >          2*KL+KU+1; rows 1 to KL of the array need not be set. */
 | |
| /* >          The j-th column of A is stored in the j-th column of the */
 | |
| /* >          array AB as follows: */
 | |
| /* >          AB(kl+ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl) */
 | |
| /* > */
 | |
| /* >          On exit, details of the factorization: U is stored as an */
 | |
| /* >          upper triangular band matrix with KL+KU superdiagonals in */
 | |
| /* >          rows 1 to KL+KU+1, and the multipliers used during the */
 | |
| /* >          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
 | |
| /* >          See below for further details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (f2cmin(M,N)) */
 | |
| /* >          The pivot indices; for 1 <= i <= f2cmin(M,N), row i of the */
 | |
| /* >          matrix was interchanged with row IPIV(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
 | |
| /* >               has been completed, but the factor U is exactly */
 | |
| /* >               singular, and division by zero will occur if it is used */
 | |
| /* >               to solve a system of equations. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complexGBcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The band storage scheme is illustrated by the following example, when */
 | |
| /* >  M = N = 6, KL = 2, KU = 1: */
 | |
| /* > */
 | |
| /* >  On entry:                       On exit: */
 | |
| /* > */
 | |
| /* >      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
 | |
| /* >      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
 | |
| /* >      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
 | |
| /* >     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
 | |
| /* >     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
 | |
| /* >     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */
 | |
| /* > */
 | |
| /* >  Array elements marked * are not used by the routine; elements marked */
 | |
| /* >  + need not be set on entry, but are required by the routine to store */
 | |
| /* >  elements of U because of fill-in resulting from the row interchanges. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgbtrf_(integer *m, integer *n, integer *kl, integer *ku,
 | |
| 	 complex *ab, integer *ldab, integer *ipiv, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 | |
|     complex q__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     complex temp;
 | |
|     integer i__, j;
 | |
|     extern /* Subroutine */ void cscal_(integer *, complex *, complex *, 
 | |
| 	    integer *), cgemm_(char *, char *, integer *, integer *, integer *
 | |
| 	    , complex *, complex *, integer *, complex *, integer *, complex *
 | |
| 	    , complex *, integer *), cgeru_(integer *, 
 | |
| 	    integer *, complex *, complex *, integer *, complex *, integer *, 
 | |
| 	    complex *, integer *), ccopy_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *), cswap_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *);
 | |
|     complex work13[4160]	/* was [65][64] */, work31[4160]	/* 
 | |
| 	    was [65][64] */;
 | |
|     extern /* Subroutine */ void ctrsm_(char *, char *, char *, char *, 
 | |
| 	    integer *, integer *, complex *, complex *, integer *, complex *, 
 | |
| 	    integer *);
 | |
|     integer i2, i3, j2, j3, k2;
 | |
|     extern /* Subroutine */ void cgbtf2_(integer *, integer *, integer *, 
 | |
| 	    integer *, complex *, integer *, integer *, integer *);
 | |
|     integer jb, nb, ii, jj, jm, ip, jp, km, ju, kv;
 | |
|     extern integer icamax_(integer *, complex *, integer *);
 | |
|     integer nw;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ int claswp_(integer *, complex *, integer *, 
 | |
| 	    integer *, integer *, integer *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     KV is the number of superdiagonals in the factor U, allowing for */
 | |
| /*     fill-in */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     --ipiv;
 | |
| 
 | |
|     /* Function Body */
 | |
|     kv = *ku + *kl;
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     *info = 0;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*kl < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ku < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldab < *kl + kv + 1) {
 | |
| 	*info = -6;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CGBTRF", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine the block size for this environment */
 | |
| 
 | |
|     nb = ilaenv_(&c__1, "CGBTRF", " ", m, n, kl, ku, (ftnlen)6, (ftnlen)1);
 | |
| 
 | |
| /*     The block size must not exceed the limit set by the size of the */
 | |
| /*     local arrays WORK13 and WORK31. */
 | |
| 
 | |
|     nb = f2cmin(nb,64);
 | |
| 
 | |
|     if (nb <= 1 || nb > *kl) {
 | |
| 
 | |
| /*        Use unblocked code */
 | |
| 
 | |
| 	cgbtf2_(m, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
 | |
|     } else {
 | |
| 
 | |
| /*        Use blocked code */
 | |
| 
 | |
| /*        Zero the superdiagonal elements of the work array WORK13 */
 | |
| 
 | |
| 	i__1 = nb;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = j - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		i__3 = i__ + j * 65 - 66;
 | |
| 		work13[i__3].r = 0.f, work13[i__3].i = 0.f;
 | |
| /* L10: */
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| /*        Zero the subdiagonal elements of the work array WORK31 */
 | |
| 
 | |
| 	i__1 = nb;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = nb;
 | |
| 	    for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 		i__3 = i__ + j * 65 - 66;
 | |
| 		work31[i__3].r = 0.f, work31[i__3].i = 0.f;
 | |
| /* L30: */
 | |
| 	    }
 | |
| /* L40: */
 | |
| 	}
 | |
| 
 | |
| /*        Gaussian elimination with partial pivoting */
 | |
| 
 | |
| /*        Set fill-in elements in columns KU+2 to KV to zero */
 | |
| 
 | |
| 	i__1 = f2cmin(kv,*n);
 | |
| 	for (j = *ku + 2; j <= i__1; ++j) {
 | |
| 	    i__2 = *kl;
 | |
| 	    for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
 | |
| 		i__3 = i__ + j * ab_dim1;
 | |
| 		ab[i__3].r = 0.f, ab[i__3].i = 0.f;
 | |
| /* L50: */
 | |
| 	    }
 | |
| /* L60: */
 | |
| 	}
 | |
| 
 | |
| /*        JU is the index of the last column affected by the current */
 | |
| /*        stage of the factorization */
 | |
| 
 | |
| 	ju = 1;
 | |
| 
 | |
| 	i__1 = f2cmin(*m,*n);
 | |
| 	i__2 = nb;
 | |
| 	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | |
| /* Computing MIN */
 | |
| 	    i__3 = nb, i__4 = f2cmin(*m,*n) - j + 1;
 | |
| 	    jb = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*           The active part of the matrix is partitioned */
 | |
| 
 | |
| /*              A11   A12   A13 */
 | |
| /*              A21   A22   A23 */
 | |
| /*              A31   A32   A33 */
 | |
| 
 | |
| /*           Here A11, A21 and A31 denote the current block of JB columns */
 | |
| /*           which is about to be factorized. The number of rows in the */
 | |
| /*           partitioning are JB, I2, I3 respectively, and the numbers */
 | |
| /*           of columns are JB, J2, J3. The superdiagonal elements of A13 */
 | |
| /*           and the subdiagonal elements of A31 lie outside the band. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__3 = *kl - jb, i__4 = *m - j - jb + 1;
 | |
| 	    i2 = f2cmin(i__3,i__4);
 | |
| /* Computing MIN */
 | |
| 	    i__3 = jb, i__4 = *m - j - *kl + 1;
 | |
| 	    i3 = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*           J2 and J3 are computed after JU has been updated. */
 | |
| 
 | |
| /*           Factorize the current block of JB columns */
 | |
| 
 | |
| 	    i__3 = j + jb - 1;
 | |
| 	    for (jj = j; jj <= i__3; ++jj) {
 | |
| 
 | |
| /*              Set fill-in elements in column JJ+KV to zero */
 | |
| 
 | |
| 		if (jj + kv <= *n) {
 | |
| 		    i__4 = *kl;
 | |
| 		    for (i__ = 1; i__ <= i__4; ++i__) {
 | |
| 			i__5 = i__ + (jj + kv) * ab_dim1;
 | |
| 			ab[i__5].r = 0.f, ab[i__5].i = 0.f;
 | |
| /* L70: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Find pivot and test for singularity. KM is the number of */
 | |
| /*              subdiagonal elements in the current column. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = *kl, i__5 = *m - jj;
 | |
| 		km = f2cmin(i__4,i__5);
 | |
| 		i__4 = km + 1;
 | |
| 		jp = icamax_(&i__4, &ab[kv + 1 + jj * ab_dim1], &c__1);
 | |
| 		ipiv[jj] = jp + jj - j;
 | |
| 		i__4 = kv + jp + jj * ab_dim1;
 | |
| 		if (ab[i__4].r != 0.f || ab[i__4].i != 0.f) {
 | |
| /* Computing MAX */
 | |
| /* Computing MIN */
 | |
| 		    i__6 = jj + *ku + jp - 1;
 | |
| 		    i__4 = ju, i__5 = f2cmin(i__6,*n);
 | |
| 		    ju = f2cmax(i__4,i__5);
 | |
| 		    if (jp != 1) {
 | |
| 
 | |
| /*                    Apply interchange to columns J to J+JB-1 */
 | |
| 
 | |
| 			if (jp + jj - 1 < j + *kl) {
 | |
| 
 | |
| 			    i__4 = *ldab - 1;
 | |
| 			    i__5 = *ldab - 1;
 | |
| 			    cswap_(&jb, &ab[kv + 1 + jj - j + j * ab_dim1], &
 | |
| 				    i__4, &ab[kv + jp + jj - j + j * ab_dim1],
 | |
| 				     &i__5);
 | |
| 			} else {
 | |
| 
 | |
| /*                       The interchange affects columns J to JJ-1 of A31 */
 | |
| /*                       which are stored in the work array WORK31 */
 | |
| 
 | |
| 			    i__4 = jj - j;
 | |
| 			    i__5 = *ldab - 1;
 | |
| 			    cswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], 
 | |
| 				    &i__5, &work31[jp + jj - j - *kl - 1], &
 | |
| 				    c__65);
 | |
| 			    i__4 = j + jb - jj;
 | |
| 			    i__5 = *ldab - 1;
 | |
| 			    i__6 = *ldab - 1;
 | |
| 			    cswap_(&i__4, &ab[kv + 1 + jj * ab_dim1], &i__5, &
 | |
| 				    ab[kv + jp + jj * ab_dim1], &i__6);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Compute multipliers */
 | |
| 
 | |
| 		    c_div(&q__1, &c_b1, &ab[kv + 1 + jj * ab_dim1]);
 | |
| 		    cscal_(&km, &q__1, &ab[kv + 2 + jj * ab_dim1], &c__1);
 | |
| 
 | |
| /*                 Update trailing submatrix within the band and within */
 | |
| /*                 the current block. JM is the index of the last column */
 | |
| /*                 which needs to be updated. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__4 = ju, i__5 = j + jb - 1;
 | |
| 		    jm = f2cmin(i__4,i__5);
 | |
| 		    if (jm > jj) {
 | |
| 			i__4 = jm - jj;
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			i__5 = *ldab - 1;
 | |
| 			i__6 = *ldab - 1;
 | |
| 			cgeru_(&km, &i__4, &q__1, &ab[kv + 2 + jj * ab_dim1], 
 | |
| 				&c__1, &ab[kv + (jj + 1) * ab_dim1], &i__5, &
 | |
| 				ab[kv + 1 + (jj + 1) * ab_dim1], &i__6);
 | |
| 		    }
 | |
| 		} else {
 | |
| 
 | |
| /*                 If pivot is zero, set INFO to the index of the pivot */
 | |
| /*                 unless a zero pivot has already been found. */
 | |
| 
 | |
| 		    if (*info == 0) {
 | |
| 			*info = jj;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Copy current column of A31 into the work array WORK31 */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = jj - j + 1;
 | |
| 		nw = f2cmin(i__4,i3);
 | |
| 		if (nw > 0) {
 | |
| 		    ccopy_(&nw, &ab[kv + *kl + 1 - jj + j + jj * ab_dim1], &
 | |
| 			    c__1, &work31[(jj - j + 1) * 65 - 65], &c__1);
 | |
| 		}
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	    if (j + jb <= *n) {
 | |
| 
 | |
| /*              Apply the row interchanges to the other blocks. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__3 = ju - j + 1;
 | |
| 		j2 = f2cmin(i__3,kv) - jb;
 | |
| /* Computing MAX */
 | |
| 		i__3 = 0, i__4 = ju - j - kv + 1;
 | |
| 		j3 = f2cmax(i__3,i__4);
 | |
| 
 | |
| /*              Use CLASWP to apply the row interchanges to A12, A22, and */
 | |
| /*              A32. */
 | |
| 
 | |
| 		i__3 = *ldab - 1;
 | |
| 		claswp_(&j2, &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__3, &
 | |
| 			c__1, &jb, &ipiv[j], &c__1);
 | |
| 
 | |
| /*              Adjust the pivot indices. */
 | |
| 
 | |
| 		i__3 = j + jb - 1;
 | |
| 		for (i__ = j; i__ <= i__3; ++i__) {
 | |
| 		    ipiv[i__] = ipiv[i__] + j - 1;
 | |
| /* L90: */
 | |
| 		}
 | |
| 
 | |
| /*              Apply the row interchanges to A13, A23, and A33 */
 | |
| /*              columnwise. */
 | |
| 
 | |
| 		k2 = j - 1 + jb + j2;
 | |
| 		i__3 = j3;
 | |
| 		for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		    jj = k2 + i__;
 | |
| 		    i__4 = j + jb - 1;
 | |
| 		    for (ii = j + i__ - 1; ii <= i__4; ++ii) {
 | |
| 			ip = ipiv[ii];
 | |
| 			if (ip != ii) {
 | |
| 			    i__5 = kv + 1 + ii - jj + jj * ab_dim1;
 | |
| 			    temp.r = ab[i__5].r, temp.i = ab[i__5].i;
 | |
| 			    i__5 = kv + 1 + ii - jj + jj * ab_dim1;
 | |
| 			    i__6 = kv + 1 + ip - jj + jj * ab_dim1;
 | |
| 			    ab[i__5].r = ab[i__6].r, ab[i__5].i = ab[i__6].i;
 | |
| 			    i__5 = kv + 1 + ip - jj + jj * ab_dim1;
 | |
| 			    ab[i__5].r = temp.r, ab[i__5].i = temp.i;
 | |
| 			}
 | |
| /* L100: */
 | |
| 		    }
 | |
| /* L110: */
 | |
| 		}
 | |
| 
 | |
| /*              Update the relevant part of the trailing submatrix */
 | |
| 
 | |
| 		if (j2 > 0) {
 | |
| 
 | |
| /*                 Update A12 */
 | |
| 
 | |
| 		    i__3 = *ldab - 1;
 | |
| 		    i__4 = *ldab - 1;
 | |
| 		    ctrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j2, 
 | |
| 			    &c_b1, &ab[kv + 1 + j * ab_dim1], &i__3, &ab[kv + 
 | |
| 			    1 - jb + (j + jb) * ab_dim1], &i__4);
 | |
| 
 | |
| 		    if (i2 > 0) {
 | |
| 
 | |
| /*                    Update A22 */
 | |
| 
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			i__3 = *ldab - 1;
 | |
| 			i__4 = *ldab - 1;
 | |
| 			i__5 = *ldab - 1;
 | |
| 			cgemm_("No transpose", "No transpose", &i2, &j2, &jb, 
 | |
| 				&q__1, &ab[kv + 1 + jb + j * ab_dim1], &i__3, 
 | |
| 				&ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__4, 
 | |
| 				&c_b1, &ab[kv + 1 + (j + jb) * ab_dim1], &
 | |
| 				i__5);
 | |
| 		    }
 | |
| 
 | |
| 		    if (i3 > 0) {
 | |
| 
 | |
| /*                    Update A32 */
 | |
| 
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			i__3 = *ldab - 1;
 | |
| 			i__4 = *ldab - 1;
 | |
| 			cgemm_("No transpose", "No transpose", &i3, &j2, &jb, 
 | |
| 				&q__1, work31, &c__65, &ab[kv + 1 - jb + (j + 
 | |
| 				jb) * ab_dim1], &i__3, &c_b1, &ab[kv + *kl + 
 | |
| 				1 - jb + (j + jb) * ab_dim1], &i__4);
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j3 > 0) {
 | |
| 
 | |
| /*                 Copy the lower triangle of A13 into the work array */
 | |
| /*                 WORK13 */
 | |
| 
 | |
| 		    i__3 = j3;
 | |
| 		    for (jj = 1; jj <= i__3; ++jj) {
 | |
| 			i__4 = jb;
 | |
| 			for (ii = jj; ii <= i__4; ++ii) {
 | |
| 			    i__5 = ii + jj * 65 - 66;
 | |
| 			    i__6 = ii - jj + 1 + (jj + j + kv - 1) * ab_dim1;
 | |
| 			    work13[i__5].r = ab[i__6].r, work13[i__5].i = ab[
 | |
| 				    i__6].i;
 | |
| /* L120: */
 | |
| 			}
 | |
| /* L130: */
 | |
| 		    }
 | |
| 
 | |
| /*                 Update A13 in the work array */
 | |
| 
 | |
| 		    i__3 = *ldab - 1;
 | |
| 		    ctrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j3, 
 | |
| 			    &c_b1, &ab[kv + 1 + j * ab_dim1], &i__3, work13, &
 | |
| 			    c__65);
 | |
| 
 | |
| 		    if (i2 > 0) {
 | |
| 
 | |
| /*                    Update A23 */
 | |
| 
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			i__3 = *ldab - 1;
 | |
| 			i__4 = *ldab - 1;
 | |
| 			cgemm_("No transpose", "No transpose", &i2, &j3, &jb, 
 | |
| 				&q__1, &ab[kv + 1 + jb + j * ab_dim1], &i__3, 
 | |
| 				work13, &c__65, &c_b1, &ab[jb + 1 + (j + kv) *
 | |
| 				 ab_dim1], &i__4);
 | |
| 		    }
 | |
| 
 | |
| 		    if (i3 > 0) {
 | |
| 
 | |
| /*                    Update A33 */
 | |
| 
 | |
| 			q__1.r = -1.f, q__1.i = 0.f;
 | |
| 			i__3 = *ldab - 1;
 | |
| 			cgemm_("No transpose", "No transpose", &i3, &j3, &jb, 
 | |
| 				&q__1, work31, &c__65, work13, &c__65, &c_b1, 
 | |
| 				&ab[*kl + 1 + (j + kv) * ab_dim1], &i__3);
 | |
| 		    }
 | |
| 
 | |
| /*                 Copy the lower triangle of A13 back into place */
 | |
| 
 | |
| 		    i__3 = j3;
 | |
| 		    for (jj = 1; jj <= i__3; ++jj) {
 | |
| 			i__4 = jb;
 | |
| 			for (ii = jj; ii <= i__4; ++ii) {
 | |
| 			    i__5 = ii - jj + 1 + (jj + j + kv - 1) * ab_dim1;
 | |
| 			    i__6 = ii + jj * 65 - 66;
 | |
| 			    ab[i__5].r = work13[i__6].r, ab[i__5].i = work13[
 | |
| 				    i__6].i;
 | |
| /* L140: */
 | |
| 			}
 | |
| /* L150: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Adjust the pivot indices. */
 | |
| 
 | |
| 		i__3 = j + jb - 1;
 | |
| 		for (i__ = j; i__ <= i__3; ++i__) {
 | |
| 		    ipiv[i__] = ipiv[i__] + j - 1;
 | |
| /* L160: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Partially undo the interchanges in the current block to */
 | |
| /*           restore the upper triangular form of A31 and copy the upper */
 | |
| /*           triangle of A31 back into place */
 | |
| 
 | |
| 	    i__3 = j;
 | |
| 	    for (jj = j + jb - 1; jj >= i__3; --jj) {
 | |
| 		jp = ipiv[jj] - jj + 1;
 | |
| 		if (jp != 1) {
 | |
| 
 | |
| /*                 Apply interchange to columns J to JJ-1 */
 | |
| 
 | |
| 		    if (jp + jj - 1 < j + *kl) {
 | |
| 
 | |
| /*                    The interchange does not affect A31 */
 | |
| 
 | |
| 			i__4 = jj - j;
 | |
| 			i__5 = *ldab - 1;
 | |
| 			i__6 = *ldab - 1;
 | |
| 			cswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
 | |
| 				i__5, &ab[kv + jp + jj - j + j * ab_dim1], &
 | |
| 				i__6);
 | |
| 		    } else {
 | |
| 
 | |
| /*                    The interchange does affect A31 */
 | |
| 
 | |
| 			i__4 = jj - j;
 | |
| 			i__5 = *ldab - 1;
 | |
| 			cswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
 | |
| 				i__5, &work31[jp + jj - j - *kl - 1], &c__65);
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Copy the current column of A31 back into place */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = i3, i__5 = jj - j + 1;
 | |
| 		nw = f2cmin(i__4,i__5);
 | |
| 		if (nw > 0) {
 | |
| 		    ccopy_(&nw, &work31[(jj - j + 1) * 65 - 65], &c__1, &ab[
 | |
| 			    kv + *kl + 1 - jj + j + jj * ab_dim1], &c__1);
 | |
| 		}
 | |
| /* L170: */
 | |
| 	    }
 | |
| /* L180: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CGBTRF */
 | |
| 
 | |
| } /* cgbtrf_ */
 | |
| 
 |