1085 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1085 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CBBCSD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CBBCSD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbbcsd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbbcsd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbbcsd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
 | |
| *                          THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
 | |
| *                          V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
 | |
| *                          B22D, B22E, RWORK, LRWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
 | |
| *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               B11D( * ), B11E( * ), B12D( * ), B12E( * ),
 | |
| *      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
 | |
| *      $                   PHI( * ), THETA( * ), RWORK( * )
 | |
| *       COMPLEX            U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
 | |
| *      $                   V2T( LDV2T, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CBBCSD computes the CS decomposition of a unitary matrix in
 | |
| *> bidiagonal-block form,
 | |
| *>
 | |
| *>
 | |
| *>     [ B11 | B12 0  0 ]
 | |
| *>     [  0  |  0 -I  0 ]
 | |
| *> X = [----------------]
 | |
| *>     [ B21 | B22 0  0 ]
 | |
| *>     [  0  |  0  0  I ]
 | |
| *>
 | |
| *>                               [  C | -S  0  0 ]
 | |
| *>                   [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
 | |
| *>                 = [---------] [---------------] [---------]   .
 | |
| *>                   [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
 | |
| *>                               [  0 |  0  0  I ]
 | |
| *>
 | |
| *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
 | |
| *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
 | |
| *> transposed and/or permuted. This can be done in constant time using
 | |
| *> the TRANS and SIGNS options. See CUNCSD for details.)
 | |
| *>
 | |
| *> The bidiagonal matrices B11, B12, B21, and B22 are represented
 | |
| *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
 | |
| *>
 | |
| *> The unitary matrices U1, U2, V1T, and V2T are input/output.
 | |
| *> The input matrices are pre- or post-multiplied by the appropriate
 | |
| *> singular vector matrices.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU1
 | |
| *> \verbatim
 | |
| *>          JOBU1 is CHARACTER
 | |
| *>          = 'Y':      U1 is updated;
 | |
| *>          otherwise:  U1 is not updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBU2
 | |
| *> \verbatim
 | |
| *>          JOBU2 is CHARACTER
 | |
| *>          = 'Y':      U2 is updated;
 | |
| *>          otherwise:  U2 is not updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV1T
 | |
| *> \verbatim
 | |
| *>          JOBV1T is CHARACTER
 | |
| *>          = 'Y':      V1T is updated;
 | |
| *>          otherwise:  V1T is not updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV2T
 | |
| *> \verbatim
 | |
| *>          JOBV2T is CHARACTER
 | |
| *>          = 'Y':      V2T is updated;
 | |
| *>          otherwise:  V2T is not updated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER
 | |
| *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
 | |
| *>                      order;
 | |
| *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
 | |
| *>                      major order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows and columns in X, the unitary matrix in
 | |
| *>          bidiagonal-block form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows in the top-left block of X. 0 <= P <= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is INTEGER
 | |
| *>          The number of columns in the top-left block of X.
 | |
| *>          0 <= Q <= MIN(P,M-P,M-Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] THETA
 | |
| *> \verbatim
 | |
| *>          THETA is REAL array, dimension (Q)
 | |
| *>          On entry, the angles THETA(1),...,THETA(Q) that, along with
 | |
| *>          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
 | |
| *>          form. On exit, the angles whose cosines and sines define the
 | |
| *>          diagonal blocks in the CS decomposition.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] PHI
 | |
| *> \verbatim
 | |
| *>          PHI is REAL array, dimension (Q-1)
 | |
| *>          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
 | |
| *>          THETA(Q), define the matrix in bidiagonal-block form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U1
 | |
| *> \verbatim
 | |
| *>          U1 is COMPLEX array, dimension (LDU1,P)
 | |
| *>          On entry, a P-by-P matrix. On exit, U1 is postmultiplied
 | |
| *>          by the left singular vector matrix common to [ B11 ; 0 ] and
 | |
| *>          [ B12 0 0 ; 0 -I 0 0 ].
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU1
 | |
| *> \verbatim
 | |
| *>          LDU1 is INTEGER
 | |
| *>          The leading dimension of the array U1, LDU1 >= MAX(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U2
 | |
| *> \verbatim
 | |
| *>          U2 is COMPLEX array, dimension (LDU2,M-P)
 | |
| *>          On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
 | |
| *>          postmultiplied by the left singular vector matrix common to
 | |
| *>          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU2
 | |
| *> \verbatim
 | |
| *>          LDU2 is INTEGER
 | |
| *>          The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V1T
 | |
| *> \verbatim
 | |
| *>          V1T is COMPLEX array, dimension (LDV1T,Q)
 | |
| *>          On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
 | |
| *>          by the conjugate transpose of the right singular vector
 | |
| *>          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV1T
 | |
| *> \verbatim
 | |
| *>          LDV1T is INTEGER
 | |
| *>          The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V2T
 | |
| *> \verbatim
 | |
| *>          V2T is COMPLEX array, dimension (LDV2T,M-Q)
 | |
| *>          On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
 | |
| *>          premultiplied by the conjugate transpose of the right
 | |
| *>          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
 | |
| *>          [ B22 0 0 ; 0 0 I ].
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV2T
 | |
| *> \verbatim
 | |
| *>          LDV2T is INTEGER
 | |
| *>          The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B11D
 | |
| *> \verbatim
 | |
| *>          B11D is REAL array, dimension (Q)
 | |
| *>          When CBBCSD converges, B11D contains the cosines of THETA(1),
 | |
| *>          ..., THETA(Q). If CBBCSD fails to converge, then B11D
 | |
| *>          contains the diagonal of the partially reduced top-left
 | |
| *>          block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B11E
 | |
| *> \verbatim
 | |
| *>          B11E is REAL array, dimension (Q-1)
 | |
| *>          When CBBCSD converges, B11E contains zeros. If CBBCSD fails
 | |
| *>          to converge, then B11E contains the superdiagonal of the
 | |
| *>          partially reduced top-left block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B12D
 | |
| *> \verbatim
 | |
| *>          B12D is REAL array, dimension (Q)
 | |
| *>          When CBBCSD converges, B12D contains the negative sines of
 | |
| *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
 | |
| *>          B12D contains the diagonal of the partially reduced top-right
 | |
| *>          block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B12E
 | |
| *> \verbatim
 | |
| *>          B12E is REAL array, dimension (Q-1)
 | |
| *>          When CBBCSD converges, B12E contains zeros. If CBBCSD fails
 | |
| *>          to converge, then B12E contains the subdiagonal of the
 | |
| *>          partially reduced top-right block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B21D
 | |
| *> \verbatim
 | |
| *>          B21D is REAL array, dimension (Q)
 | |
| *>          When CBBCSD converges, B21D contains the negative sines of
 | |
| *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
 | |
| *>          B21D contains the diagonal of the partially reduced bottom-left
 | |
| *>          block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B21E
 | |
| *> \verbatim
 | |
| *>          B21E is REAL array, dimension (Q-1)
 | |
| *>          When CBBCSD converges, B21E contains zeros. If CBBCSD fails
 | |
| *>          to converge, then B21E contains the subdiagonal of the
 | |
| *>          partially reduced bottom-left block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B22D
 | |
| *> \verbatim
 | |
| *>          B22D is REAL array, dimension (Q)
 | |
| *>          When CBBCSD converges, B22D contains the negative sines of
 | |
| *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
 | |
| *>          B22D contains the diagonal of the partially reduced bottom-right
 | |
| *>          block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B22E
 | |
| *> \verbatim
 | |
| *>          B22E is REAL array, dimension (Q-1)
 | |
| *>          When CBBCSD converges, B22E contains zeros. If CBBCSD fails
 | |
| *>          to converge, then B22E contains the subdiagonal of the
 | |
| *>          partially reduced bottom-right block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (MAX(1,LRWORK))
 | |
| *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LRWORK
 | |
| *> \verbatim
 | |
| *>          LRWORK is INTEGER
 | |
| *>          The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
 | |
| *>
 | |
| *>          If LRWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the RWORK array,
 | |
| *>          returns this value as the first entry of the work array, and
 | |
| *>          no error message related to LRWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if CBBCSD did not converge, INFO specifies the number
 | |
| *>                of nonzero entries in PHI, and B11D, B11E, etc.,
 | |
| *>                contain the partially reduced matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  TOLMUL  REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
 | |
| *>          TOLMUL controls the convergence criterion of the QR loop.
 | |
| *>          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
 | |
| *>          are within TOLMUL*EPS of either bound.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
 | |
| *>      Algorithms, 50(1):33-65, 2009.
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
 | |
|      $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
 | |
|      $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
 | |
|      $                   B22D, B22E, RWORK, LRWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
 | |
|       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               B11D( * ), B11E( * ), B12D( * ), B12E( * ),
 | |
|      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
 | |
|      $                   PHI( * ), THETA( * ), RWORK( * )
 | |
|       COMPLEX            U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
 | |
|      $                   V2T( LDV2T, * )
 | |
| *     ..
 | |
| *
 | |
| *  ===================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            MAXITR
 | |
|       PARAMETER          ( MAXITR = 6 )
 | |
|       REAL               HUNDRED, MEIGHTH, ONE, TEN, ZERO
 | |
|       PARAMETER          ( HUNDRED = 100.0E0, MEIGHTH = -0.125E0,
 | |
|      $                     ONE = 1.0E0, TEN = 10.0E0, ZERO = 0.0E0 )
 | |
|       COMPLEX            NEGONECOMPLEX
 | |
|       PARAMETER          ( NEGONECOMPLEX = (-1.0E0,0.0E0) )
 | |
|       REAL               PIOVER2
 | |
|       PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
 | |
|      $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
 | |
|      $                   WANTV2T
 | |
|       INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
 | |
|      $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
 | |
|      $                   LRWORKMIN, LRWORKOPT, MAXIT, MINI
 | |
|       REAL               B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
 | |
|      $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
 | |
|      $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
 | |
|      $                   UNFL, X1, X2, Y1, Y2
 | |
| *
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLASR, CSCAL, CSWAP, SLARTGP, SLARTGS, SLAS2,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME, SLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = LRWORK .EQ. -1
 | |
|       WANTU1 = LSAME( JOBU1, 'Y' )
 | |
|       WANTU2 = LSAME( JOBU2, 'Y' )
 | |
|       WANTV1T = LSAME( JOBV1T, 'Y' )
 | |
|       WANTV2T = LSAME( JOBV2T, 'Y' )
 | |
|       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
 | |
| *
 | |
|       IF( M .LT. 0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
 | |
|          INFO = -16
 | |
|       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
 | |
|          INFO = -18
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if Q = 0
 | |
| *
 | |
|       IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
 | |
|          LRWORKMIN = 1
 | |
|          RWORK(1) = LRWORKMIN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *
 | |
|       IF( INFO .EQ. 0 ) THEN
 | |
|          IU1CS = 1
 | |
|          IU1SN = IU1CS + Q
 | |
|          IU2CS = IU1SN + Q
 | |
|          IU2SN = IU2CS + Q
 | |
|          IV1TCS = IU2SN + Q
 | |
|          IV1TSN = IV1TCS + Q
 | |
|          IV2TCS = IV1TSN + Q
 | |
|          IV2TSN = IV2TCS + Q
 | |
|          LRWORKOPT = IV2TSN + Q - 1
 | |
|          LRWORKMIN = LRWORKOPT
 | |
|          RWORK(1) = LRWORKOPT
 | |
|          IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
 | |
|             INFO = -28
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO .NE. 0 ) THEN
 | |
|          CALL XERBLA( 'CBBCSD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
 | |
|       TOL = TOLMUL*EPS
 | |
|       THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
 | |
| *
 | |
| *     Test for negligible sines or cosines
 | |
| *
 | |
|       DO I = 1, Q
 | |
|          IF( THETA(I) .LT. THRESH ) THEN
 | |
|             THETA(I) = ZERO
 | |
|          ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
 | |
|             THETA(I) = PIOVER2
 | |
|          END IF
 | |
|       END DO
 | |
|       DO I = 1, Q-1
 | |
|          IF( PHI(I) .LT. THRESH ) THEN
 | |
|             PHI(I) = ZERO
 | |
|          ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
 | |
|             PHI(I) = PIOVER2
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
| *     Initial deflation
 | |
| *
 | |
|       IMAX = Q
 | |
|       DO WHILE( IMAX .GT. 1 )
 | |
|          IF( PHI(IMAX-1) .NE. ZERO ) THEN
 | |
|             EXIT
 | |
|          END IF
 | |
|          IMAX = IMAX - 1
 | |
|       END DO
 | |
|       IMIN = IMAX - 1
 | |
|       IF  ( IMIN .GT. 1 ) THEN
 | |
|          DO WHILE( PHI(IMIN-1) .NE. ZERO )
 | |
|             IMIN = IMIN - 1
 | |
|             IF  ( IMIN .LE. 1 ) EXIT
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Initialize iteration counter
 | |
| *
 | |
|       MAXIT = MAXITR*Q*Q
 | |
|       ITER = 0
 | |
| *
 | |
| *     Begin main iteration loop
 | |
| *
 | |
|       DO WHILE( IMAX .GT. 1 )
 | |
| *
 | |
| *        Compute the matrix entries
 | |
| *
 | |
|          B11D(IMIN) = COS( THETA(IMIN) )
 | |
|          B21D(IMIN) = -SIN( THETA(IMIN) )
 | |
|          DO I = IMIN, IMAX - 1
 | |
|             B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
 | |
|             B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
 | |
|             B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
 | |
|             B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
 | |
|             B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
 | |
|             B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
 | |
|             B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
 | |
|             B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
 | |
|          END DO
 | |
|          B12D(IMAX) = SIN( THETA(IMAX) )
 | |
|          B22D(IMAX) = COS( THETA(IMAX) )
 | |
| *
 | |
| *        Abort if not converging; otherwise, increment ITER
 | |
| *
 | |
|          IF( ITER .GT. MAXIT ) THEN
 | |
|             INFO = 0
 | |
|             DO I = 1, Q
 | |
|                IF( PHI(I) .NE. ZERO )
 | |
|      $            INFO = INFO + 1
 | |
|             END DO
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
|          ITER = ITER + IMAX - IMIN
 | |
| *
 | |
| *        Compute shifts
 | |
| *
 | |
|          THETAMAX = THETA(IMIN)
 | |
|          THETAMIN = THETA(IMIN)
 | |
|          DO I = IMIN+1, IMAX
 | |
|             IF( THETA(I) > THETAMAX )
 | |
|      $         THETAMAX = THETA(I)
 | |
|             IF( THETA(I) < THETAMIN )
 | |
|      $         THETAMIN = THETA(I)
 | |
|          END DO
 | |
| *
 | |
|          IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
 | |
| *
 | |
| *           Zero on diagonals of B11 and B22; induce deflation with a
 | |
| *           zero shift
 | |
| *
 | |
|             MU = ZERO
 | |
|             NU = ONE
 | |
| *
 | |
|          ELSE IF( THETAMIN .LT. THRESH ) THEN
 | |
| *
 | |
| *           Zero on diagonals of B12 and B22; induce deflation with a
 | |
| *           zero shift
 | |
| *
 | |
|             MU = ONE
 | |
|             NU = ZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Compute shifts for B11 and B21 and use the lesser
 | |
| *
 | |
|             CALL SLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
 | |
|      $                  DUMMY )
 | |
|             CALL SLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
 | |
|      $                  DUMMY )
 | |
| *
 | |
|             IF( SIGMA11 .LE. SIGMA21 ) THEN
 | |
|                MU = SIGMA11
 | |
|                NU = SQRT( ONE - MU**2 )
 | |
|                IF( MU .LT. THRESH ) THEN
 | |
|                   MU = ZERO
 | |
|                   NU = ONE
 | |
|                END IF
 | |
|             ELSE
 | |
|                NU = SIGMA21
 | |
|                MU = SQRT( 1.0 - NU**2 )
 | |
|                IF( NU .LT. THRESH ) THEN
 | |
|                   MU = ONE
 | |
|                   NU = ZERO
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Rotate to produce bulges in B11 and B21
 | |
| *
 | |
|          IF( MU .LE. NU ) THEN
 | |
|             CALL SLARTGS( B11D(IMIN), B11E(IMIN), MU,
 | |
|      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
 | |
|          ELSE
 | |
|             CALL SLARTGS( B21D(IMIN), B21E(IMIN), NU,
 | |
|      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
 | |
|          END IF
 | |
| *
 | |
|          TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
 | |
|      $          RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
 | |
|          B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
 | |
|      $                RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
 | |
|          B11D(IMIN) = TEMP
 | |
|          B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
 | |
|          B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
 | |
|          TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
 | |
|      $          RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
 | |
|          B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
 | |
|      $                RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
 | |
|          B21D(IMIN) = TEMP
 | |
|          B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
 | |
|          B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
 | |
| *
 | |
| *        Compute THETA(IMIN)
 | |
| *
 | |
|          THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
 | |
|      $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
 | |
| *
 | |
| *        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
 | |
| *
 | |
|          IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
 | |
|             CALL SLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
 | |
|      $                    RWORK(IU1CS+IMIN-1), R )
 | |
|          ELSE IF( MU .LE. NU ) THEN
 | |
|             CALL SLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
 | |
|      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
 | |
|          ELSE
 | |
|             CALL SLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
 | |
|      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
 | |
|          END IF
 | |
|          IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
 | |
|             CALL SLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
 | |
|      $                    RWORK(IU2CS+IMIN-1), R )
 | |
|          ELSE IF( NU .LT. MU ) THEN
 | |
|             CALL SLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
 | |
|      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
 | |
|          ELSE
 | |
|             CALL SLARTGS( B22D(IMIN), B22E(IMIN), MU,
 | |
|      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
 | |
|          END IF
 | |
|          RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1)
 | |
|          RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1)
 | |
| *
 | |
|          TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
 | |
|      $          RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
 | |
|          B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
 | |
|      $                  RWORK(IU1SN+IMIN-1)*B11E(IMIN)
 | |
|          B11E(IMIN) = TEMP
 | |
|          IF( IMAX .GT. IMIN+1 ) THEN
 | |
|             B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
 | |
|             B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
 | |
|          END IF
 | |
|          TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
 | |
|      $          RWORK(IU1SN+IMIN-1)*B12E(IMIN)
 | |
|          B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
 | |
|      $                RWORK(IU1SN+IMIN-1)*B12D(IMIN)
 | |
|          B12D(IMIN) = TEMP
 | |
|          B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
 | |
|          B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
 | |
|          TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
 | |
|      $          RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
 | |
|          B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
 | |
|      $                  RWORK(IU2SN+IMIN-1)*B21E(IMIN)
 | |
|          B21E(IMIN) = TEMP
 | |
|          IF( IMAX .GT. IMIN+1 ) THEN
 | |
|             B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
 | |
|             B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
 | |
|          END IF
 | |
|          TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
 | |
|      $          RWORK(IU2SN+IMIN-1)*B22E(IMIN)
 | |
|          B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
 | |
|      $                RWORK(IU2SN+IMIN-1)*B22D(IMIN)
 | |
|          B22D(IMIN) = TEMP
 | |
|          B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
 | |
|          B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
 | |
| *
 | |
| *        Inner loop: chase bulges from B11(IMIN,IMIN+2),
 | |
| *        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
 | |
| *        bottom-right
 | |
| *
 | |
|          DO I = IMIN+1, IMAX-1
 | |
| *
 | |
| *           Compute PHI(I-1)
 | |
| *
 | |
|             X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
 | |
|             X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
 | |
|             Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
 | |
|             Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
 | |
| *
 | |
|             PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
 | |
| *
 | |
| *           Determine if there are bulges to chase or if a new direct
 | |
| *           summand has been reached
 | |
| *
 | |
|             RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
 | |
|             RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
 | |
|             RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
 | |
|             RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
 | |
| *
 | |
| *           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
 | |
| *           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
 | |
| *           chasing by applying the original shift again.
 | |
| *
 | |
|             IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
 | |
|                CALL SLARTGP( X2, X1, RWORK(IV1TSN+I-1),
 | |
|      $                       RWORK(IV1TCS+I-1), R )
 | |
|             ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
 | |
|                CALL SLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
 | |
|      $                       RWORK(IV1TCS+I-1), R )
 | |
|             ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
 | |
|                CALL SLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
 | |
|      $                       RWORK(IV1TCS+I-1), R )
 | |
|             ELSE IF( MU .LE. NU ) THEN
 | |
|                CALL SLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
 | |
|      $                       RWORK(IV1TSN+I-1) )
 | |
|             ELSE
 | |
|                CALL SLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
 | |
|      $                       RWORK(IV1TSN+I-1) )
 | |
|             END IF
 | |
|             RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1)
 | |
|             RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1)
 | |
|             IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
 | |
|                CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
 | |
|      $                       RWORK(IV2TCS+I-1-1), R )
 | |
|             ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
 | |
|                CALL SLARTGP( B12BULGE, B12D(I-1), RWORK(IV2TSN+I-1-1),
 | |
|      $                       RWORK(IV2TCS+I-1-1), R )
 | |
|             ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
 | |
|                CALL SLARTGP( B22BULGE, B22D(I-1), RWORK(IV2TSN+I-1-1),
 | |
|      $                       RWORK(IV2TCS+I-1-1), R )
 | |
|             ELSE IF( NU .LT. MU ) THEN
 | |
|                CALL SLARTGS( B12E(I-1), B12D(I), NU,
 | |
|      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
 | |
|             ELSE
 | |
|                CALL SLARTGS( B22E(I-1), B22D(I), MU,
 | |
|      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
 | |
|             END IF
 | |
| *
 | |
|             TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
 | |
|             B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
 | |
|      $                RWORK(IV1TSN+I-1)*B11D(I)
 | |
|             B11D(I) = TEMP
 | |
|             B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
 | |
|             B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1)
 | |
|             TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
 | |
|             B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
 | |
|      $                RWORK(IV1TSN+I-1)*B21D(I)
 | |
|             B21D(I) = TEMP
 | |
|             B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
 | |
|             B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1)
 | |
|             TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) +
 | |
|      $             RWORK(IV2TSN+I-1-1)*B12D(I)
 | |
|             B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
 | |
|      $                RWORK(IV2TSN+I-1-1)*B12E(I-1)
 | |
|             B12E(I-1) = TEMP
 | |
|             B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
 | |
|             B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
 | |
|             TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) +
 | |
|      $             RWORK(IV2TSN+I-1-1)*B22D(I)
 | |
|             B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
 | |
|      $                RWORK(IV2TSN+I-1-1)*B22E(I-1)
 | |
|             B22E(I-1) = TEMP
 | |
|             B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
 | |
|             B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
 | |
| *
 | |
| *           Compute THETA(I)
 | |
| *
 | |
|             X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
 | |
|             X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
 | |
|             Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
 | |
|             Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
 | |
| *
 | |
|             THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
 | |
| *
 | |
| *           Determine if there are bulges to chase or if a new direct
 | |
| *           summand has been reached
 | |
| *
 | |
|             RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
 | |
|             RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
 | |
|             RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
 | |
|             RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
 | |
| *
 | |
| *           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
 | |
| *           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
 | |
| *           chasing by applying the original shift again.
 | |
| *
 | |
|             IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
 | |
|                CALL SLARTGP( X2, X1, RWORK(IU1SN+I-1), RWORK(IU1CS+I-1),
 | |
|      $                       R )
 | |
|             ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
 | |
|                CALL SLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
 | |
|      $                       RWORK(IU1CS+I-1), R )
 | |
|             ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
 | |
|                CALL SLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
 | |
|      $                       RWORK(IU1CS+I-1), R )
 | |
|             ELSE IF( MU .LE. NU ) THEN
 | |
|                CALL SLARTGS( B11E(I), B11D(I+1), MU, RWORK(IU1CS+I-1),
 | |
|      $                       RWORK(IU1SN+I-1) )
 | |
|             ELSE
 | |
|                CALL SLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
 | |
|      $                       RWORK(IU1SN+I-1) )
 | |
|             END IF
 | |
|             IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
 | |
|                CALL SLARTGP( Y2, Y1, RWORK(IU2SN+I-1), RWORK(IU2CS+I-1),
 | |
|      $                       R )
 | |
|             ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
 | |
|                CALL SLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
 | |
|      $                       RWORK(IU2CS+I-1), R )
 | |
|             ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
 | |
|                CALL SLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
 | |
|      $                       RWORK(IU2CS+I-1), R )
 | |
|             ELSE IF( NU .LT. MU ) THEN
 | |
|                CALL SLARTGS( B21E(I), B21E(I+1), NU, RWORK(IU2CS+I-1),
 | |
|      $                       RWORK(IU2SN+I-1) )
 | |
|             ELSE
 | |
|                CALL SLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
 | |
|      $                       RWORK(IU2SN+I-1) )
 | |
|             END IF
 | |
|             RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1)
 | |
|             RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1)
 | |
| *
 | |
|             TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
 | |
|             B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) -
 | |
|      $                  RWORK(IU1SN+I-1)*B11E(I)
 | |
|             B11E(I) = TEMP
 | |
|             IF( I .LT. IMAX - 1 ) THEN
 | |
|                B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
 | |
|                B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1)
 | |
|             END IF
 | |
|             TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
 | |
|             B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) -
 | |
|      $                  RWORK(IU2SN+I-1)*B21E(I)
 | |
|             B21E(I) = TEMP
 | |
|             IF( I .LT. IMAX - 1 ) THEN
 | |
|                B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
 | |
|                B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1)
 | |
|             END IF
 | |
|             TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
 | |
|             B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
 | |
|      $                RWORK(IU1SN+I-1)*B12D(I)
 | |
|             B12D(I) = TEMP
 | |
|             B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
 | |
|             B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1)
 | |
|             TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
 | |
|             B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
 | |
|      $                RWORK(IU2SN+I-1)*B22D(I)
 | |
|             B22D(I) = TEMP
 | |
|             B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
 | |
|             B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1)
 | |
| *
 | |
|          END DO
 | |
| *
 | |
| *        Compute PHI(IMAX-1)
 | |
| *
 | |
|          X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
 | |
|      $        COS(THETA(IMAX-1))*B21E(IMAX-1)
 | |
|          Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
 | |
|      $        COS(THETA(IMAX-1))*B22D(IMAX-1)
 | |
|          Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
 | |
| *
 | |
|          PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
 | |
| *
 | |
| *        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
 | |
| *
 | |
|          RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
 | |
|          RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
 | |
| *
 | |
|          IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
 | |
|             CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
 | |
|      $                    RWORK(IV2TCS+IMAX-1-1), R )
 | |
|          ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
 | |
|             CALL SLARTGP( B12BULGE, B12D(IMAX-1),
 | |
|      $                    RWORK(IV2TSN+IMAX-1-1),
 | |
|      $                    RWORK(IV2TCS+IMAX-1-1), R )
 | |
|          ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
 | |
|             CALL SLARTGP( B22BULGE, B22D(IMAX-1),
 | |
|      $                    RWORK(IV2TSN+IMAX-1-1),
 | |
|      $                    RWORK(IV2TCS+IMAX-1-1), R )
 | |
|          ELSE IF( NU .LT. MU ) THEN
 | |
|             CALL SLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
 | |
|      $                    RWORK(IV2TCS+IMAX-1-1),
 | |
|      $                    RWORK(IV2TSN+IMAX-1-1) )
 | |
|          ELSE
 | |
|             CALL SLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
 | |
|      $                    RWORK(IV2TCS+IMAX-1-1),
 | |
|      $                    RWORK(IV2TSN+IMAX-1-1) )
 | |
|          END IF
 | |
| *
 | |
|          TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
 | |
|      $          RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
 | |
|          B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
 | |
|      $                RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
 | |
|          B12E(IMAX-1) = TEMP
 | |
|          TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
 | |
|      $          RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
 | |
|          B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
 | |
|      $                RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
 | |
|          B22E(IMAX-1) = TEMP
 | |
| *
 | |
| *        Update singular vectors
 | |
| *
 | |
|          IF( WANTU1 ) THEN
 | |
|             IF( COLMAJOR ) THEN
 | |
|                CALL CLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
 | |
|      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
 | |
|      $                     U1(1,IMIN), LDU1 )
 | |
|             ELSE
 | |
|                CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
 | |
|      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
 | |
|      $                     U1(IMIN,1), LDU1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTU2 ) THEN
 | |
|             IF( COLMAJOR ) THEN
 | |
|                CALL CLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
 | |
|      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
 | |
|      $                     U2(1,IMIN), LDU2 )
 | |
|             ELSE
 | |
|                CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
 | |
|      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
 | |
|      $                     U2(IMIN,1), LDU2 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTV1T ) THEN
 | |
|             IF( COLMAJOR ) THEN
 | |
|                CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
 | |
|      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
 | |
|      $                     V1T(IMIN,1), LDV1T )
 | |
|             ELSE
 | |
|                CALL CLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
 | |
|      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
 | |
|      $                     V1T(1,IMIN), LDV1T )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTV2T ) THEN
 | |
|             IF( COLMAJOR ) THEN
 | |
|                CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
 | |
|      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
 | |
|      $                     V2T(IMIN,1), LDV2T )
 | |
|             ELSE
 | |
|                CALL CLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
 | |
|      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
 | |
|      $                     V2T(1,IMIN), LDV2T )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
 | |
| *
 | |
|          IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
 | |
|             B11D(IMAX) = -B11D(IMAX)
 | |
|             B21D(IMAX) = -B21D(IMAX)
 | |
|             IF( WANTV1T ) THEN
 | |
|                IF( COLMAJOR ) THEN
 | |
|                   CALL CSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
 | |
|                ELSE
 | |
|                   CALL CSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Compute THETA(IMAX)
 | |
| *
 | |
|          X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
 | |
|      $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
 | |
|          Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
 | |
|      $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
 | |
| *
 | |
|          THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
 | |
| *
 | |
| *        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
 | |
| *        and B22(IMAX,IMAX-1)
 | |
| *
 | |
|          IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
 | |
|             B12D(IMAX) = -B12D(IMAX)
 | |
|             IF( WANTU1 ) THEN
 | |
|                IF( COLMAJOR ) THEN
 | |
|                   CALL CSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
 | |
|                ELSE
 | |
|                   CALL CSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
 | |
|             B22D(IMAX) = -B22D(IMAX)
 | |
|             IF( WANTU2 ) THEN
 | |
|                IF( COLMAJOR ) THEN
 | |
|                   CALL CSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
 | |
|                ELSE
 | |
|                   CALL CSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
 | |
| *
 | |
|          IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
 | |
|             IF( WANTV2T ) THEN
 | |
|                IF( COLMAJOR ) THEN
 | |
|                   CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
 | |
|                ELSE
 | |
|                   CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Test for negligible sines or cosines
 | |
| *
 | |
|          DO I = IMIN, IMAX
 | |
|             IF( THETA(I) .LT. THRESH ) THEN
 | |
|                THETA(I) = ZERO
 | |
|             ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
 | |
|                THETA(I) = PIOVER2
 | |
|             END IF
 | |
|          END DO
 | |
|          DO I = IMIN, IMAX-1
 | |
|             IF( PHI(I) .LT. THRESH ) THEN
 | |
|                PHI(I) = ZERO
 | |
|             ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
 | |
|                PHI(I) = PIOVER2
 | |
|             END IF
 | |
|          END DO
 | |
| *
 | |
| *        Deflate
 | |
| *
 | |
|          IF (IMAX .GT. 1) THEN
 | |
|             DO WHILE( PHI(IMAX-1) .EQ. ZERO )
 | |
|                IMAX = IMAX - 1
 | |
|                IF (IMAX .LE. 1) EXIT
 | |
|             END DO
 | |
|          END IF
 | |
|          IF( IMIN .GT. IMAX - 1 )
 | |
|      $      IMIN = IMAX - 1
 | |
|          IF (IMIN .GT. 1) THEN
 | |
|             DO WHILE (PHI(IMIN-1) .NE. ZERO)
 | |
|                 IMIN = IMIN - 1
 | |
|                 IF (IMIN .LE. 1) EXIT
 | |
|             END DO
 | |
|          END IF
 | |
| *
 | |
| *        Repeat main iteration loop
 | |
| *
 | |
|       END DO
 | |
| *
 | |
| *     Postprocessing: order THETA from least to greatest
 | |
| *
 | |
|       DO I = 1, Q
 | |
| *
 | |
|          MINI = I
 | |
|          THETAMIN = THETA(I)
 | |
|          DO J = I+1, Q
 | |
|             IF( THETA(J) .LT. THETAMIN ) THEN
 | |
|                MINI = J
 | |
|                THETAMIN = THETA(J)
 | |
|             END IF
 | |
|          END DO
 | |
| *
 | |
|          IF( MINI .NE. I ) THEN
 | |
|             THETA(MINI) = THETA(I)
 | |
|             THETA(I) = THETAMIN
 | |
|             IF( COLMAJOR ) THEN
 | |
|                IF( WANTU1 )
 | |
|      $            CALL CSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
 | |
|                IF( WANTU2 )
 | |
|      $            CALL CSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
 | |
|                IF( WANTV1T )
 | |
|      $            CALL CSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
 | |
|                IF( WANTV2T )
 | |
|      $            CALL CSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
 | |
|      $               LDV2T )
 | |
|             ELSE
 | |
|                IF( WANTU1 )
 | |
|      $            CALL CSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
 | |
|                IF( WANTU2 )
 | |
|      $            CALL CSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
 | |
|                IF( WANTV1T )
 | |
|      $            CALL CSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
 | |
|                IF( WANTV2T )
 | |
|      $            CALL CSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|       END DO
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CBBCSD
 | |
| *
 | |
|       END
 | |
| 
 |