503 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			503 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGGSVD3 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd3.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd3.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd3.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
 | 
						|
*                           LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
 | 
						|
*                           LWORK, RWORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBQ, JOBU, JOBV
 | 
						|
*       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
*      $                   U( LDU, * ), V( LDV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGGSVD3 computes the generalized singular value decomposition (GSVD)
 | 
						|
*> of an M-by-N complex matrix A and P-by-N complex matrix B:
 | 
						|
*>
 | 
						|
*>       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )
 | 
						|
*>
 | 
						|
*> where U, V and Q are unitary matrices.
 | 
						|
*> Let K+L = the effective numerical rank of the
 | 
						|
*> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
 | 
						|
*> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
 | 
						|
*> matrices and of the following structures, respectively:
 | 
						|
*>
 | 
						|
*> If M-K-L >= 0,
 | 
						|
*>
 | 
						|
*>                     K  L
 | 
						|
*>        D1 =     K ( I  0 )
 | 
						|
*>                 L ( 0  C )
 | 
						|
*>             M-K-L ( 0  0 )
 | 
						|
*>
 | 
						|
*>                   K  L
 | 
						|
*>        D2 =   L ( 0  S )
 | 
						|
*>             P-L ( 0  0 )
 | 
						|
*>
 | 
						|
*>                 N-K-L  K    L
 | 
						|
*>   ( 0 R ) = K (  0   R11  R12 )
 | 
						|
*>             L (  0    0   R22 )
 | 
						|
*> where
 | 
						|
*>
 | 
						|
*>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
 | 
						|
*>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
 | 
						|
*>   C**2 + S**2 = I.
 | 
						|
*>
 | 
						|
*>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 | 
						|
*>
 | 
						|
*> If M-K-L < 0,
 | 
						|
*>
 | 
						|
*>                   K M-K K+L-M
 | 
						|
*>        D1 =   K ( I  0    0   )
 | 
						|
*>             M-K ( 0  C    0   )
 | 
						|
*>
 | 
						|
*>                     K M-K K+L-M
 | 
						|
*>        D2 =   M-K ( 0  S    0  )
 | 
						|
*>             K+L-M ( 0  0    I  )
 | 
						|
*>               P-L ( 0  0    0  )
 | 
						|
*>
 | 
						|
*>                    N-K-L  K   M-K  K+L-M
 | 
						|
*>   ( 0 R ) =     K ( 0    R11  R12  R13  )
 | 
						|
*>               M-K ( 0     0   R22  R23  )
 | 
						|
*>             K+L-M ( 0     0    0   R33  )
 | 
						|
*>
 | 
						|
*> where
 | 
						|
*>
 | 
						|
*>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 | 
						|
*>   S = diag( BETA(K+1),  ... , BETA(M) ),
 | 
						|
*>   C**2 + S**2 = I.
 | 
						|
*>
 | 
						|
*>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
 | 
						|
*>   ( 0  R22 R23 )
 | 
						|
*>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
 | 
						|
*>
 | 
						|
*> The routine computes C, S, R, and optionally the unitary
 | 
						|
*> transformation matrices U, V and Q.
 | 
						|
*>
 | 
						|
*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 | 
						|
*> A and B implicitly gives the SVD of A*inv(B):
 | 
						|
*>                      A*inv(B) = U*(D1*inv(D2))*V**H.
 | 
						|
*> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
 | 
						|
*> equal to the CS decomposition of A and B. Furthermore, the GSVD can
 | 
						|
*> be used to derive the solution of the eigenvalue problem:
 | 
						|
*>                      A**H*A x = lambda* B**H*B x.
 | 
						|
*> In some literature, the GSVD of A and B is presented in the form
 | 
						|
*>                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
 | 
						|
*> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
 | 
						|
*> ``diagonal''.  The former GSVD form can be converted to the latter
 | 
						|
*> form by taking the nonsingular matrix X as
 | 
						|
*>
 | 
						|
*>                       X = Q*(  I   0    )
 | 
						|
*>                             (  0 inv(R) )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBU
 | 
						|
*> \verbatim
 | 
						|
*>          JOBU is CHARACTER*1
 | 
						|
*>          = 'U':  Unitary matrix U is computed;
 | 
						|
*>          = 'N':  U is not computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBV
 | 
						|
*> \verbatim
 | 
						|
*>          JOBV is CHARACTER*1
 | 
						|
*>          = 'V':  Unitary matrix V is computed;
 | 
						|
*>          = 'N':  V is not computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBQ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBQ is CHARACTER*1
 | 
						|
*>          = 'Q':  Unitary matrix Q is computed;
 | 
						|
*>          = 'N':  Q is not computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>          The number of rows of the matrix B.  P >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>
 | 
						|
*>          On exit, K and L specify the dimension of the subblocks
 | 
						|
*>          described in Purpose.
 | 
						|
*>          K + L = effective numerical rank of (A**H,B**H)**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, A contains the triangular matrix R, or part of R.
 | 
						|
*>          See Purpose for details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,N)
 | 
						|
*>          On entry, the P-by-N matrix B.
 | 
						|
*>          On exit, B contains part of the triangular matrix R if
 | 
						|
*>          M-K-L < 0.  See Purpose for details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,P).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>
 | 
						|
*>          On exit, ALPHA and BETA contain the generalized singular
 | 
						|
*>          value pairs of A and B;
 | 
						|
*>            ALPHA(1:K) = 1,
 | 
						|
*>            BETA(1:K)  = 0,
 | 
						|
*>          and if M-K-L >= 0,
 | 
						|
*>            ALPHA(K+1:K+L) = C,
 | 
						|
*>            BETA(K+1:K+L)  = S,
 | 
						|
*>          or if M-K-L < 0,
 | 
						|
*>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
 | 
						|
*>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
 | 
						|
*>          and
 | 
						|
*>            ALPHA(K+L+1:N) = 0
 | 
						|
*>            BETA(K+L+1:N)  = 0
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX*16 array, dimension (LDU,M)
 | 
						|
*>          If JOBU = 'U', U contains the M-by-M unitary matrix U.
 | 
						|
*>          If JOBU = 'N', U is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U. LDU >= max(1,M) if
 | 
						|
*>          JOBU = 'U'; LDU >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX*16 array, dimension (LDV,P)
 | 
						|
*>          If JOBV = 'V', V contains the P-by-P unitary matrix V.
 | 
						|
*>          If JOBV = 'N', V is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V. LDV >= max(1,P) if
 | 
						|
*>          JOBV = 'V'; LDV >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX*16 array, dimension (LDQ,N)
 | 
						|
*>          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
 | 
						|
*>          If JOBQ = 'N', Q is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q. LDQ >= max(1,N) if
 | 
						|
*>          JOBQ = 'Q'; LDQ >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*>          On exit, IWORK stores the sorting information. More
 | 
						|
*>          precisely, the following loop will sort ALPHA
 | 
						|
*>             for I = K+1, min(M,K+L)
 | 
						|
*>                 swap ALPHA(I) and ALPHA(IWORK(I))
 | 
						|
*>             endfor
 | 
						|
*>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
 | 
						|
*>                converge.  For further details, see subroutine ZTGSJA.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Internal Parameters:
 | 
						|
*  =========================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>  TOLA    DOUBLE PRECISION
 | 
						|
*>  TOLB    DOUBLE PRECISION
 | 
						|
*>          TOLA and TOLB are the thresholds to determine the effective
 | 
						|
*>          rank of (A**H,B**H)**H. Generally, they are set to
 | 
						|
*>                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
 | 
						|
*>                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
 | 
						|
*>          The size of TOLA and TOLB may affect the size of backward
 | 
						|
*>          errors of the decomposition.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16GEsing
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Huan Ren, Computer Science Division, University of
 | 
						|
*>     California at Berkeley, USA
 | 
						|
*>
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*>  ZGGSVD3 replaces the deprecated subroutine ZGGSVD.
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
 | 
						|
     $                    LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
 | 
						|
     $                    WORK, LWORK, RWORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBQ, JOBU, JOBV
 | 
						|
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
 | 
						|
     $                   LWORK
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   ALPHA( * ), BETA( * ), RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
     $                   U( LDU, * ), V( LDV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            WANTQ, WANTU, WANTV, LQUERY
 | 
						|
      INTEGER            I, IBND, ISUB, J, NCYCLE, LWKOPT
 | 
						|
      DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE
 | 
						|
      EXTERNAL           LSAME, DLAMCH, ZLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, XERBLA, ZGGSVP3, ZTGSJA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters
 | 
						|
*
 | 
						|
      WANTU = LSAME( JOBU, 'U' )
 | 
						|
      WANTV = LSAME( JOBV, 'V' )
 | 
						|
      WANTQ = LSAME( JOBQ, 'Q' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      LWKOPT = 1
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( P.LT.0 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
 | 
						|
         INFO = -16
 | 
						|
      ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
 | 
						|
         INFO = -18
 | 
						|
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | 
						|
         INFO = -20
 | 
						|
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -24
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         CALL ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 | 
						|
     $                 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
 | 
						|
     $                 WORK, WORK, -1, INFO )
 | 
						|
         LWKOPT = N + INT( WORK( 1 ) )
 | 
						|
         LWKOPT = MAX( 2*N, LWKOPT )
 | 
						|
         LWKOPT = MAX( 1, LWKOPT )
 | 
						|
         WORK( 1 ) = DCMPLX( LWKOPT )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGGSVD3', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      ENDIF
 | 
						|
*
 | 
						|
*     Compute the Frobenius norm of matrices A and B
 | 
						|
*
 | 
						|
      ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
 | 
						|
      BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
 | 
						|
*
 | 
						|
*     Get machine precision and set up threshold for determining
 | 
						|
*     the effective numerical rank of the matrices A and B.
 | 
						|
*
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
      UNFL = DLAMCH( 'Safe Minimum' )
 | 
						|
      TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
 | 
						|
      TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
 | 
						|
*
 | 
						|
      CALL ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
 | 
						|
     $              TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
 | 
						|
     $              WORK, WORK( N+1 ), LWORK-N, INFO )
 | 
						|
*
 | 
						|
*     Compute the GSVD of two upper "triangular" matrices
 | 
						|
*
 | 
						|
      CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
 | 
						|
     $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
 | 
						|
     $             WORK, NCYCLE, INFO )
 | 
						|
*
 | 
						|
*     Sort the singular values and store the pivot indices in IWORK
 | 
						|
*     Copy ALPHA to RWORK, then sort ALPHA in RWORK
 | 
						|
*
 | 
						|
      CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
 | 
						|
      IBND = MIN( L, M-K )
 | 
						|
      DO 20 I = 1, IBND
 | 
						|
*
 | 
						|
*        Scan for largest ALPHA(K+I)
 | 
						|
*
 | 
						|
         ISUB = I
 | 
						|
         SMAX = RWORK( K+I )
 | 
						|
         DO 10 J = I + 1, IBND
 | 
						|
            TEMP = RWORK( K+J )
 | 
						|
            IF( TEMP.GT.SMAX ) THEN
 | 
						|
               ISUB = J
 | 
						|
               SMAX = TEMP
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
         IF( ISUB.NE.I ) THEN
 | 
						|
            RWORK( K+ISUB ) = RWORK( K+I )
 | 
						|
            RWORK( K+I ) = SMAX
 | 
						|
            IWORK( K+I ) = K + ISUB
 | 
						|
         ELSE
 | 
						|
            IWORK( K+I ) = K + I
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      WORK( 1 ) = DCMPLX( LWKOPT )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGGSVD3
 | 
						|
*
 | 
						|
      END
 |