712 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			712 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DTGEX2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | 
						|
*                          LDZ, J1, N1, N2, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            WANTQ, WANTZ
 | 
						|
*       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
*      $                   WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
 | 
						|
*> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
 | 
						|
*> (A, B) by an orthogonal equivalence transformation.
 | 
						|
*>
 | 
						|
*> (A, B) must be in generalized real Schur canonical form (as returned
 | 
						|
*> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
 | 
						|
*> diagonal blocks. B is upper triangular.
 | 
						|
*>
 | 
						|
*> Optionally, the matrices Q and Z of generalized Schur vectors are
 | 
						|
*> updated.
 | 
						|
*>
 | 
						|
*>        Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
 | 
						|
*>        Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] WANTQ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTQ is LOGICAL
 | 
						|
*>          .TRUE. : update the left transformation matrix Q;
 | 
						|
*>          .FALSE.: do not update Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTZ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTZ is LOGICAL
 | 
						|
*>          .TRUE. : update the right transformation matrix Z;
 | 
						|
*>          .FALSE.: do not update Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimensions (LDA,N)
 | 
						|
*>          On entry, the matrix A in the pair (A, B).
 | 
						|
*>          On exit, the updated matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimensions (LDB,N)
 | 
						|
*>          On entry, the matrix B in the pair (A, B).
 | 
						|
*>          On exit, the updated matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
 | 
						|
*>          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
 | 
						|
*>          On exit, the updated matrix Q.
 | 
						|
*>          Not referenced if WANTQ = .FALSE..
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q. LDQ >= 1.
 | 
						|
*>          If WANTQ = .TRUE., LDQ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
 | 
						|
*>          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
 | 
						|
*>          On exit, the updated matrix Z.
 | 
						|
*>          Not referenced if WANTZ = .FALSE..
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z. LDZ >= 1.
 | 
						|
*>          If WANTZ = .TRUE., LDZ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] J1
 | 
						|
*> \verbatim
 | 
						|
*>          J1 is INTEGER
 | 
						|
*>          The index to the first block (A11, B11). 1 <= J1 <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N1
 | 
						|
*> \verbatim
 | 
						|
*>          N1 is INTEGER
 | 
						|
*>          The order of the first block (A11, B11). N1 = 0, 1 or 2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N2
 | 
						|
*> \verbatim
 | 
						|
*>          N2 is INTEGER
 | 
						|
*>          The order of the second block (A22, B22). N2 = 0, 1 or 2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>            =0: Successful exit
 | 
						|
*>            >0: If INFO = 1, the transformed matrix (A, B) would be
 | 
						|
*>                too far from generalized Schur form; the blocks are
 | 
						|
*>                not swapped and (A, B) and (Q, Z) are unchanged.
 | 
						|
*>                The problem of swapping is too ill-conditioned.
 | 
						|
*>            <0: If INFO = -16: LWORK is too small. Appropriate value
 | 
						|
*>                for LWORK is returned in WORK(1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleGEauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*>  In the current code both weak and strong stability tests are
 | 
						|
*>  performed. The user can omit the strong stability test by changing
 | 
						|
*>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
 | 
						|
*>  details.
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | 
						|
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | 
						|
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | 
						|
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | 
						|
*>
 | 
						|
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | 
						|
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | 
						|
*>      Estimation: Theory, Algorithms and Software,
 | 
						|
*>      Report UMINF - 94.04, Department of Computing Science, Umea
 | 
						|
*>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
 | 
						|
*>      Note 87. To appear in Numerical Algorithms, 1996.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | 
						|
     $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            WANTQ, WANTZ
 | 
						|
      INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
     $                   WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
 | 
						|
*  loops. Sven Hammarling, 1/5/02.
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      DOUBLE PRECISION   TWENTY
 | 
						|
      PARAMETER          ( TWENTY = 2.0D+01 )
 | 
						|
      INTEGER            LDST
 | 
						|
      PARAMETER          ( LDST = 4 )
 | 
						|
      LOGICAL            WANDS
 | 
						|
      PARAMETER          ( WANDS = .TRUE. )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            STRONG, WEAK
 | 
						|
      INTEGER            I, IDUM, LINFO, M
 | 
						|
      DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORMA, DNORMB, DSCALE,
 | 
						|
     $                   DSUM, EPS, F, G, SA, SB, SCALE, SMLNUM,
 | 
						|
     $                   THRESHA, THRESHB
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            IWORK( LDST )
 | 
						|
      DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
 | 
						|
     $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
 | 
						|
     $                   LICOP( LDST, LDST ), S( LDST, LDST ),
 | 
						|
     $                   SCPY( LDST, LDST ), T( LDST, LDST ),
 | 
						|
     $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
 | 
						|
     $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
 | 
						|
     $                   DROT, DSCAL, DTGSY2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
 | 
						|
     $   RETURN
 | 
						|
      M = N1 + N2
 | 
						|
      IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
 | 
						|
         INFO = -16
 | 
						|
         WORK( 1 ) = MAX( 1, N*M, M*M*2 )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WEAK = .FALSE.
 | 
						|
      STRONG = .FALSE.
 | 
						|
*
 | 
						|
*     Make a local copy of selected block
 | 
						|
*
 | 
						|
      CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
 | 
						|
      CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
 | 
						|
      CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
 | 
						|
      CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
 | 
						|
*
 | 
						|
*     Compute threshold for testing acceptance of swapping.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SMLNUM = DLAMCH( 'S' ) / EPS
 | 
						|
      DSCALE = ZERO
 | 
						|
      DSUM = ONE
 | 
						|
      CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
 | 
						|
      CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
 | 
						|
      DNORMA = DSCALE*SQRT( DSUM )
 | 
						|
      DSCALE = ZERO
 | 
						|
      DSUM = ONE
 | 
						|
      CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
 | 
						|
      CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
 | 
						|
      DNORMB = DSCALE*SQRT( DSUM )
 | 
						|
*
 | 
						|
*     THRES has been changed from
 | 
						|
*        THRESH = MAX( TEN*EPS*SA, SMLNUM )
 | 
						|
*     to
 | 
						|
*        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
 | 
						|
*     on 04/01/10.
 | 
						|
*     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
 | 
						|
*     Jim Demmel and Guillaume Revy. See forum post 1783.
 | 
						|
*
 | 
						|
      THRESHA = MAX( TWENTY*EPS*DNORMA, SMLNUM )
 | 
						|
      THRESHB = MAX( TWENTY*EPS*DNORMB, SMLNUM )
 | 
						|
*
 | 
						|
      IF( M.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
 | 
						|
*
 | 
						|
*        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
 | 
						|
*        using Givens rotations and perform the swap tentatively.
 | 
						|
*
 | 
						|
         F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
 | 
						|
         G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
 | 
						|
         SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
 | 
						|
         SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
 | 
						|
         CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
 | 
						|
         IR( 2, 1 ) = -IR( 1, 2 )
 | 
						|
         IR( 2, 2 ) = IR( 1, 1 )
 | 
						|
         CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
 | 
						|
     $              IR( 2, 1 ) )
 | 
						|
         CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
 | 
						|
     $              IR( 2, 1 ) )
 | 
						|
         IF( SA.GE.SB ) THEN
 | 
						|
            CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
 | 
						|
     $                   DDUM )
 | 
						|
         ELSE
 | 
						|
            CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
 | 
						|
     $                   DDUM )
 | 
						|
         END IF
 | 
						|
         CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
 | 
						|
     $              LI( 2, 1 ) )
 | 
						|
         CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
 | 
						|
     $              LI( 2, 1 ) )
 | 
						|
         LI( 2, 2 ) = LI( 1, 1 )
 | 
						|
         LI( 1, 2 ) = -LI( 2, 1 )
 | 
						|
*
 | 
						|
*        Weak stability test: |S21| <= O(EPS F-norm((A)))
 | 
						|
*                           and  |T21| <= O(EPS F-norm((B)))
 | 
						|
*
 | 
						|
         WEAK = ABS( S( 2, 1 ) ) .LE. THRESHA .AND.
 | 
						|
     $      ABS( T( 2, 1 ) ) .LE. THRESHB
 | 
						|
         IF( .NOT.WEAK )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
         IF( WANDS ) THEN
 | 
						|
*
 | 
						|
*           Strong stability test:
 | 
						|
*               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
 | 
						|
*               and
 | 
						|
*               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
 | 
						|
*
 | 
						|
            CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
 | 
						|
     $                   M )
 | 
						|
            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
 | 
						|
     $                  WORK, M )
 | 
						|
            CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | 
						|
     $                  WORK( M*M+1 ), M )
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | 
						|
            SA = DSCALE*SQRT( DSUM )
 | 
						|
*
 | 
						|
            CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
 | 
						|
     $                   M )
 | 
						|
            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
 | 
						|
     $                  WORK, M )
 | 
						|
            CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | 
						|
     $                  WORK( M*M+1 ), M )
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | 
						|
            SB = DSCALE*SQRT( DSUM )
 | 
						|
            STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
 | 
						|
            IF( .NOT.STRONG )
 | 
						|
     $         GO TO 70
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
 | 
						|
*               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
 | 
						|
*
 | 
						|
         CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
 | 
						|
     $              IR( 2, 1 ) )
 | 
						|
         CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
 | 
						|
     $              IR( 2, 1 ) )
 | 
						|
         CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
 | 
						|
     $              LI( 1, 1 ), LI( 2, 1 ) )
 | 
						|
         CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
 | 
						|
     $              LI( 1, 1 ), LI( 2, 1 ) )
 | 
						|
*
 | 
						|
*        Set  N1-by-N2 (2,1) - blocks to ZERO.
 | 
						|
*
 | 
						|
         A( J1+1, J1 ) = ZERO
 | 
						|
         B( J1+1, J1 ) = ZERO
 | 
						|
*
 | 
						|
*        Accumulate transformations into Q and Z if requested.
 | 
						|
*
 | 
						|
         IF( WANTZ )
 | 
						|
     $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
 | 
						|
     $                 IR( 2, 1 ) )
 | 
						|
         IF( WANTQ )
 | 
						|
     $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
 | 
						|
     $                 LI( 2, 1 ) )
 | 
						|
*
 | 
						|
*        Exit with INFO = 0 if swap was successfully performed.
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
 | 
						|
*                and 2-by-2 blocks.
 | 
						|
*
 | 
						|
*        Solve the generalized Sylvester equation
 | 
						|
*                 S11 * R - L * S22 = SCALE * S12
 | 
						|
*                 T11 * R - L * T22 = SCALE * T12
 | 
						|
*        for R and L. Solutions in LI and IR.
 | 
						|
*
 | 
						|
         CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
 | 
						|
         CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
 | 
						|
     $                IR( N2+1, N1+1 ), LDST )
 | 
						|
         CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
 | 
						|
     $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
 | 
						|
     $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
 | 
						|
     $                LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Compute orthogonal matrix QL:
 | 
						|
*
 | 
						|
*                    QL**T * LI = [ TL ]
 | 
						|
*                                 [ 0  ]
 | 
						|
*        where
 | 
						|
*                    LI =  [      -L              ]
 | 
						|
*                          [ SCALE * identity(N2) ]
 | 
						|
*
 | 
						|
         DO 10 I = 1, N2
 | 
						|
            CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
 | 
						|
            LI( N1+I, I ) = SCALE
 | 
						|
   10    CONTINUE
 | 
						|
         CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
         CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Compute orthogonal matrix RQ:
 | 
						|
*
 | 
						|
*                    IR * RQ**T =   [ 0  TR],
 | 
						|
*
 | 
						|
*         where IR = [ SCALE * identity(N1), R ]
 | 
						|
*
 | 
						|
         DO 20 I = 1, N1
 | 
						|
            IR( N2+I, I ) = SCALE
 | 
						|
   20    CONTINUE
 | 
						|
         CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
         CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Perform the swapping tentatively:
 | 
						|
*
 | 
						|
         CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
 | 
						|
     $               WORK, M )
 | 
						|
         CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
 | 
						|
     $               LDST )
 | 
						|
         CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
 | 
						|
     $               WORK, M )
 | 
						|
         CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
 | 
						|
     $               LDST )
 | 
						|
         CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
 | 
						|
         CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
 | 
						|
         CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
 | 
						|
         CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
 | 
						|
*
 | 
						|
*        Triangularize the B-part by an RQ factorization.
 | 
						|
*        Apply transformation (from left) to A-part, giving S.
 | 
						|
*
 | 
						|
         CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
         CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
 | 
						|
     $                LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
         CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
 | 
						|
     $                LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Compute F-norm(S21) in BRQA21. (T21 is 0.)
 | 
						|
*
 | 
						|
         DSCALE = ZERO
 | 
						|
         DSUM = ONE
 | 
						|
         DO 30 I = 1, N2
 | 
						|
            CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
 | 
						|
   30    CONTINUE
 | 
						|
         BRQA21 = DSCALE*SQRT( DSUM )
 | 
						|
*
 | 
						|
*        Triangularize the B-part by a QR factorization.
 | 
						|
*        Apply transformation (from right) to A-part, giving S.
 | 
						|
*
 | 
						|
         CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
         CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
 | 
						|
     $                WORK, INFO )
 | 
						|
         CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
 | 
						|
     $                WORK, INFO )
 | 
						|
         IF( LINFO.NE.0 )
 | 
						|
     $      GO TO 70
 | 
						|
*
 | 
						|
*        Compute F-norm(S21) in BQRA21. (T21 is 0.)
 | 
						|
*
 | 
						|
         DSCALE = ZERO
 | 
						|
         DSUM = ONE
 | 
						|
         DO 40 I = 1, N2
 | 
						|
            CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
 | 
						|
   40    CONTINUE
 | 
						|
         BQRA21 = DSCALE*SQRT( DSUM )
 | 
						|
*
 | 
						|
*        Decide which method to use.
 | 
						|
*          Weak stability test:
 | 
						|
*             F-norm(S21) <= O(EPS * F-norm((S)))
 | 
						|
*
 | 
						|
         IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESHA ) THEN
 | 
						|
            CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
 | 
						|
            CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
 | 
						|
            CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
 | 
						|
            CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
 | 
						|
         ELSE IF( BRQA21.GE.THRESHA ) THEN
 | 
						|
            GO TO 70
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Set lower triangle of B-part to zero
 | 
						|
*
 | 
						|
         CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
 | 
						|
*
 | 
						|
         IF( WANDS ) THEN
 | 
						|
*
 | 
						|
*           Strong stability test:
 | 
						|
*               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
 | 
						|
*               and
 | 
						|
*               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
 | 
						|
*
 | 
						|
            CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
 | 
						|
     $                   M )
 | 
						|
            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
 | 
						|
     $                  WORK, M )
 | 
						|
            CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | 
						|
     $                  WORK( M*M+1 ), M )
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | 
						|
            SA = DSCALE*SQRT( DSUM )
 | 
						|
*
 | 
						|
            CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
 | 
						|
     $                   M )
 | 
						|
            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
 | 
						|
     $                  WORK, M )
 | 
						|
            CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | 
						|
     $                  WORK( M*M+1 ), M )
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | 
						|
            SB = DSCALE*SQRT( DSUM )
 | 
						|
            STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
 | 
						|
            IF( .NOT.STRONG )
 | 
						|
     $         GO TO 70
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        If the swap is accepted ("weakly" and "strongly"), apply the
 | 
						|
*        transformations and set N1-by-N2 (2,1)-block to zero.
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
 | 
						|
*
 | 
						|
*        copy back M-by-M diagonal block starting at index J1 of (A, B)
 | 
						|
*
 | 
						|
         CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
 | 
						|
         CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
 | 
						|
         CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
 | 
						|
*
 | 
						|
*        Standardize existing 2-by-2 blocks.
 | 
						|
*
 | 
						|
         CALL DLASET( 'Full', M, M, ZERO, ZERO, WORK, M )
 | 
						|
         WORK( 1 ) = ONE
 | 
						|
         T( 1, 1 ) = ONE
 | 
						|
         IDUM = LWORK - M*M - 2
 | 
						|
         IF( N2.GT.1 ) THEN
 | 
						|
            CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
 | 
						|
     $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
 | 
						|
            WORK( M+1 ) = -WORK( 2 )
 | 
						|
            WORK( M+2 ) = WORK( 1 )
 | 
						|
            T( N2, N2 ) = T( 1, 1 )
 | 
						|
            T( 1, 2 ) = -T( 2, 1 )
 | 
						|
         END IF
 | 
						|
         WORK( M*M ) = ONE
 | 
						|
         T( M, M ) = ONE
 | 
						|
*
 | 
						|
         IF( N1.GT.1 ) THEN
 | 
						|
            CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
 | 
						|
     $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
 | 
						|
     $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
 | 
						|
     $                   T( M, M-1 ) )
 | 
						|
            WORK( M*M ) = WORK( N2*M+N2+1 )
 | 
						|
            WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
 | 
						|
            T( M, M ) = T( N2+1, N2+1 )
 | 
						|
            T( M-1, M ) = -T( M, M-1 )
 | 
						|
         END IF
 | 
						|
         CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
 | 
						|
     $               LDA, ZERO, WORK( M*M+1 ), N2 )
 | 
						|
         CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
 | 
						|
     $                LDA )
 | 
						|
         CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
 | 
						|
     $               LDB, ZERO, WORK( M*M+1 ), N2 )
 | 
						|
         CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
 | 
						|
     $                LDB )
 | 
						|
         CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
 | 
						|
     $               WORK( M*M+1 ), M )
 | 
						|
         CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
 | 
						|
         CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
 | 
						|
     $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
 | 
						|
         CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
 | 
						|
         CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
 | 
						|
     $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
 | 
						|
         CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
 | 
						|
         CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
 | 
						|
     $               WORK, M )
 | 
						|
         CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
 | 
						|
*
 | 
						|
*        Accumulate transformations into Q and Z if requested.
 | 
						|
*
 | 
						|
         IF( WANTQ ) THEN
 | 
						|
            CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
 | 
						|
     $                  LDST, ZERO, WORK, N )
 | 
						|
            CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( WANTZ ) THEN
 | 
						|
            CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
 | 
						|
     $                  LDST, ZERO, WORK, N )
 | 
						|
            CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
 | 
						|
*                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
 | 
						|
*
 | 
						|
         I = J1 + M
 | 
						|
         IF( I.LE.N ) THEN
 | 
						|
            CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
 | 
						|
     $                  A( J1, I ), LDA, ZERO, WORK, M )
 | 
						|
            CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
 | 
						|
            CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
 | 
						|
     $                  B( J1, I ), LDB, ZERO, WORK, M )
 | 
						|
            CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
 | 
						|
         END IF
 | 
						|
         I = J1 - 1
 | 
						|
         IF( I.GT.0 ) THEN
 | 
						|
            CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
 | 
						|
     $                  LDST, ZERO, WORK, I )
 | 
						|
            CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
 | 
						|
            CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
 | 
						|
     $                  LDST, ZERO, WORK, I )
 | 
						|
            CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Exit with INFO = 0 if swap was successfully performed.
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with INFO = 1 if swap was rejected.
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
      INFO = 1
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTGEX2
 | 
						|
*
 | 
						|
      END
 |