1474 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1474 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						||
#include <stdlib.h>
 | 
						||
#include <string.h>
 | 
						||
#include <stdio.h>
 | 
						||
#include <complex.h>
 | 
						||
#ifdef complex
 | 
						||
#undef complex
 | 
						||
#endif
 | 
						||
#ifdef I
 | 
						||
#undef I
 | 
						||
#endif
 | 
						||
 | 
						||
#if defined(_WIN64)
 | 
						||
typedef long long BLASLONG;
 | 
						||
typedef unsigned long long BLASULONG;
 | 
						||
#else
 | 
						||
typedef long BLASLONG;
 | 
						||
typedef unsigned long BLASULONG;
 | 
						||
#endif
 | 
						||
 | 
						||
#ifdef LAPACK_ILP64
 | 
						||
typedef BLASLONG blasint;
 | 
						||
#if defined(_WIN64)
 | 
						||
#define blasabs(x) llabs(x)
 | 
						||
#else
 | 
						||
#define blasabs(x) labs(x)
 | 
						||
#endif
 | 
						||
#else
 | 
						||
typedef int blasint;
 | 
						||
#define blasabs(x) abs(x)
 | 
						||
#endif
 | 
						||
 | 
						||
typedef blasint integer;
 | 
						||
 | 
						||
typedef unsigned int uinteger;
 | 
						||
typedef char *address;
 | 
						||
typedef short int shortint;
 | 
						||
typedef float real;
 | 
						||
typedef double doublereal;
 | 
						||
typedef struct { real r, i; } complex;
 | 
						||
typedef struct { doublereal r, i; } doublecomplex;
 | 
						||
#ifdef _MSC_VER
 | 
						||
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						||
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						||
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						||
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						||
#else
 | 
						||
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						||
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						||
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						||
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						||
#endif
 | 
						||
#define pCf(z) (*_pCf(z))
 | 
						||
#define pCd(z) (*_pCd(z))
 | 
						||
typedef int logical;
 | 
						||
typedef short int shortlogical;
 | 
						||
typedef char logical1;
 | 
						||
typedef char integer1;
 | 
						||
 | 
						||
#define TRUE_ (1)
 | 
						||
#define FALSE_ (0)
 | 
						||
 | 
						||
/* Extern is for use with -E */
 | 
						||
#ifndef Extern
 | 
						||
#define Extern extern
 | 
						||
#endif
 | 
						||
 | 
						||
/* I/O stuff */
 | 
						||
 | 
						||
typedef int flag;
 | 
						||
typedef int ftnlen;
 | 
						||
typedef int ftnint;
 | 
						||
 | 
						||
/*external read, write*/
 | 
						||
typedef struct
 | 
						||
{	flag cierr;
 | 
						||
	ftnint ciunit;
 | 
						||
	flag ciend;
 | 
						||
	char *cifmt;
 | 
						||
	ftnint cirec;
 | 
						||
} cilist;
 | 
						||
 | 
						||
/*internal read, write*/
 | 
						||
typedef struct
 | 
						||
{	flag icierr;
 | 
						||
	char *iciunit;
 | 
						||
	flag iciend;
 | 
						||
	char *icifmt;
 | 
						||
	ftnint icirlen;
 | 
						||
	ftnint icirnum;
 | 
						||
} icilist;
 | 
						||
 | 
						||
/*open*/
 | 
						||
typedef struct
 | 
						||
{	flag oerr;
 | 
						||
	ftnint ounit;
 | 
						||
	char *ofnm;
 | 
						||
	ftnlen ofnmlen;
 | 
						||
	char *osta;
 | 
						||
	char *oacc;
 | 
						||
	char *ofm;
 | 
						||
	ftnint orl;
 | 
						||
	char *oblnk;
 | 
						||
} olist;
 | 
						||
 | 
						||
/*close*/
 | 
						||
typedef struct
 | 
						||
{	flag cerr;
 | 
						||
	ftnint cunit;
 | 
						||
	char *csta;
 | 
						||
} cllist;
 | 
						||
 | 
						||
/*rewind, backspace, endfile*/
 | 
						||
typedef struct
 | 
						||
{	flag aerr;
 | 
						||
	ftnint aunit;
 | 
						||
} alist;
 | 
						||
 | 
						||
/* inquire */
 | 
						||
typedef struct
 | 
						||
{	flag inerr;
 | 
						||
	ftnint inunit;
 | 
						||
	char *infile;
 | 
						||
	ftnlen infilen;
 | 
						||
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						||
	ftnint	*inopen;
 | 
						||
	ftnint	*innum;
 | 
						||
	ftnint	*innamed;
 | 
						||
	char	*inname;
 | 
						||
	ftnlen	innamlen;
 | 
						||
	char	*inacc;
 | 
						||
	ftnlen	inacclen;
 | 
						||
	char	*inseq;
 | 
						||
	ftnlen	inseqlen;
 | 
						||
	char 	*indir;
 | 
						||
	ftnlen	indirlen;
 | 
						||
	char	*infmt;
 | 
						||
	ftnlen	infmtlen;
 | 
						||
	char	*inform;
 | 
						||
	ftnint	informlen;
 | 
						||
	char	*inunf;
 | 
						||
	ftnlen	inunflen;
 | 
						||
	ftnint	*inrecl;
 | 
						||
	ftnint	*innrec;
 | 
						||
	char	*inblank;
 | 
						||
	ftnlen	inblanklen;
 | 
						||
} inlist;
 | 
						||
 | 
						||
#define VOID void
 | 
						||
 | 
						||
union Multitype {	/* for multiple entry points */
 | 
						||
	integer1 g;
 | 
						||
	shortint h;
 | 
						||
	integer i;
 | 
						||
	/* longint j; */
 | 
						||
	real r;
 | 
						||
	doublereal d;
 | 
						||
	complex c;
 | 
						||
	doublecomplex z;
 | 
						||
	};
 | 
						||
 | 
						||
typedef union Multitype Multitype;
 | 
						||
 | 
						||
struct Vardesc {	/* for Namelist */
 | 
						||
	char *name;
 | 
						||
	char *addr;
 | 
						||
	ftnlen *dims;
 | 
						||
	int  type;
 | 
						||
	};
 | 
						||
typedef struct Vardesc Vardesc;
 | 
						||
 | 
						||
struct Namelist {
 | 
						||
	char *name;
 | 
						||
	Vardesc **vars;
 | 
						||
	int nvars;
 | 
						||
	};
 | 
						||
typedef struct Namelist Namelist;
 | 
						||
 | 
						||
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						||
#define dabs(x) (fabs(x))
 | 
						||
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						||
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						||
#define dmin(a,b) (f2cmin(a,b))
 | 
						||
#define dmax(a,b) (f2cmax(a,b))
 | 
						||
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						||
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						||
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						||
 | 
						||
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						||
#define c_abs(z) (cabsf(Cf(z)))
 | 
						||
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						||
#ifdef _MSC_VER
 | 
						||
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						||
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						||
#else
 | 
						||
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						||
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						||
#endif
 | 
						||
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						||
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						||
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						||
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						||
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						||
#define d_abs(x) (fabs(*(x)))
 | 
						||
#define d_acos(x) (acos(*(x)))
 | 
						||
#define d_asin(x) (asin(*(x)))
 | 
						||
#define d_atan(x) (atan(*(x)))
 | 
						||
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						||
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						||
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						||
#define d_cos(x) (cos(*(x)))
 | 
						||
#define d_cosh(x) (cosh(*(x)))
 | 
						||
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						||
#define d_exp(x) (exp(*(x)))
 | 
						||
#define d_imag(z) (cimag(Cd(z)))
 | 
						||
#define r_imag(z) (cimagf(Cf(z)))
 | 
						||
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						||
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						||
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						||
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						||
#define d_log(x) (log(*(x)))
 | 
						||
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						||
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						||
#define d_nint(x) u_nint(*(x))
 | 
						||
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						||
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						||
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						||
#define d_sin(x) (sin(*(x)))
 | 
						||
#define d_sinh(x) (sinh(*(x)))
 | 
						||
#define d_sqrt(x) (sqrt(*(x)))
 | 
						||
#define d_tan(x) (tan(*(x)))
 | 
						||
#define d_tanh(x) (tanh(*(x)))
 | 
						||
#define i_abs(x) abs(*(x))
 | 
						||
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						||
#define i_len(s, n) (n)
 | 
						||
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						||
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						||
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						||
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						||
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						||
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						||
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						||
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						||
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						||
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						||
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						||
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						||
#define sig_die(s, kill) { exit(1); }
 | 
						||
#define s_stop(s, n) {exit(0);}
 | 
						||
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						||
#define z_abs(z) (cabs(Cd(z)))
 | 
						||
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						||
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						||
#define myexit_() break;
 | 
						||
#define mycycle() continue;
 | 
						||
#define myceiling(w) {ceil(w)}
 | 
						||
#define myhuge(w) {HUGE_VAL}
 | 
						||
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						||
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						||
 | 
						||
/* procedure parameter types for -A and -C++ */
 | 
						||
 | 
						||
#define F2C_proc_par_types 1
 | 
						||
#ifdef __cplusplus
 | 
						||
typedef logical (*L_fp)(...);
 | 
						||
#else
 | 
						||
typedef logical (*L_fp)();
 | 
						||
#endif
 | 
						||
 | 
						||
static float spow_ui(float x, integer n) {
 | 
						||
	float pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
static double dpow_ui(double x, integer n) {
 | 
						||
	double pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
#ifdef _MSC_VER
 | 
						||
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						||
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						||
		if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						||
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	_Fcomplex p={pow.r, pow.i};
 | 
						||
	return p;
 | 
						||
}
 | 
						||
#else
 | 
						||
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						||
	_Complex float pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
#endif
 | 
						||
#ifdef _MSC_VER
 | 
						||
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						||
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						||
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						||
	return p;
 | 
						||
}
 | 
						||
#else
 | 
						||
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						||
	_Complex double pow=1.0; unsigned long int u;
 | 
						||
	if(n != 0) {
 | 
						||
		if(n < 0) n = -n, x = 1/x;
 | 
						||
		for(u = n; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
#endif
 | 
						||
static integer pow_ii(integer x, integer n) {
 | 
						||
	integer pow; unsigned long int u;
 | 
						||
	if (n <= 0) {
 | 
						||
		if (n == 0 || x == 1) pow = 1;
 | 
						||
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						||
		else n = -n;
 | 
						||
	}
 | 
						||
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						||
		u = n;
 | 
						||
		for(pow = 1; ; ) {
 | 
						||
			if(u & 01) pow *= x;
 | 
						||
			if(u >>= 1) x *= x;
 | 
						||
			else break;
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return pow;
 | 
						||
}
 | 
						||
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						||
{
 | 
						||
	double m; integer i, mi;
 | 
						||
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						||
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						||
	return mi-s+1;
 | 
						||
}
 | 
						||
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						||
{
 | 
						||
	float m; integer i, mi;
 | 
						||
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						||
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						||
	return mi-s+1;
 | 
						||
}
 | 
						||
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex float zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#endif
 | 
						||
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex double zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#endif	
 | 
						||
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex float zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCf(z) = zdotc;
 | 
						||
}
 | 
						||
#endif
 | 
						||
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						||
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						||
#ifdef _MSC_VER
 | 
						||
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						||
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						||
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#else
 | 
						||
	_Complex double zdotc = 0.0;
 | 
						||
	if (incx == 1 && incy == 1) {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						||
		}
 | 
						||
	} else {
 | 
						||
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						||
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						||
		}
 | 
						||
	}
 | 
						||
	pCd(z) = zdotc;
 | 
						||
}
 | 
						||
#endif
 | 
						||
/*  -- translated by f2c (version 20000121).
 | 
						||
   You must link the resulting object file with the libraries:
 | 
						||
	-lf2c -lm   (in that order)
 | 
						||
*/
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
/* Table of constant values */
 | 
						||
 | 
						||
static doublereal c_b10 = 1.;
 | 
						||
static doublereal c_b14 = -.125;
 | 
						||
static integer c__1 = 1;
 | 
						||
static doublereal c_b19 = 0.;
 | 
						||
static integer c__2 = 2;
 | 
						||
 | 
						||
/* > \brief \b DBDSVDX */
 | 
						||
 | 
						||
/*  =========== DOCUMENTATION =========== */
 | 
						||
 | 
						||
/* Online html documentation available at */
 | 
						||
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						||
 | 
						||
/* > \htmlonly */
 | 
						||
/* > Download DBDSVDX + dependencies */
 | 
						||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsvdx
 | 
						||
.f"> */
 | 
						||
/* > [TGZ]</a> */
 | 
						||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsvdx
 | 
						||
.f"> */
 | 
						||
/* > [ZIP]</a> */
 | 
						||
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsvdx
 | 
						||
.f"> */
 | 
						||
/* > [TXT]</a> */
 | 
						||
/* > \endhtmlonly */
 | 
						||
 | 
						||
/*  Definition: */
 | 
						||
/*  =========== */
 | 
						||
 | 
						||
/*     SUBROUTINE DBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
 | 
						||
/*    $                    NS, S, Z, LDZ, WORK, IWORK, INFO ) */
 | 
						||
 | 
						||
/*      CHARACTER          JOBZ, RANGE, UPLO */
 | 
						||
/*      INTEGER            IL, INFO, IU, LDZ, N, NS */
 | 
						||
/*      DOUBLE PRECISION   VL, VU */
 | 
						||
/*      INTEGER            IWORK( * ) */
 | 
						||
/*      DOUBLE PRECISION   D( * ), E( * ), S( * ), WORK( * ), */
 | 
						||
/*                         Z( LDZ, * ) */
 | 
						||
 | 
						||
/* > \par Purpose: */
 | 
						||
/*  ============= */
 | 
						||
/* > */
 | 
						||
/* > \verbatim */
 | 
						||
/* > */
 | 
						||
/* >  DBDSVDX computes the singular value decomposition (SVD) of a real */
 | 
						||
/* >  N-by-N (upper or lower) bidiagonal matrix B, B = U * S * VT, */
 | 
						||
/* >  where S is a diagonal matrix with non-negative diagonal elements */
 | 
						||
/* >  (the singular values of B), and U and VT are orthogonal matrices */
 | 
						||
/* >  of left and right singular vectors, respectively. */
 | 
						||
/* > */
 | 
						||
/* >  Given an upper bidiagonal B with diagonal D = [ d_1 d_2 ... d_N ] */
 | 
						||
/* >  and superdiagonal E = [ e_1 e_2 ... e_N-1 ], DBDSVDX computes the */
 | 
						||
/* >  singular value decompositon of B through the eigenvalues and */
 | 
						||
/* >  eigenvectors of the N*2-by-N*2 tridiagonal matrix */
 | 
						||
/* > */
 | 
						||
/* >        |  0  d_1                | */
 | 
						||
/* >        | d_1  0  e_1            | */
 | 
						||
/* >  TGK = |     e_1  0  d_2        | */
 | 
						||
/* >        |         d_2  .   .     | */
 | 
						||
/* >        |              .   .   . | */
 | 
						||
/* > */
 | 
						||
/* >  If (s,u,v) is a singular triplet of B with ||u|| = ||v|| = 1, then */
 | 
						||
/* >  (+/-s,q), ||q|| = 1, are eigenpairs of TGK, with q = P * ( u' +/-v' ) / */
 | 
						||
/* >  sqrt(2) = ( v_1 u_1 v_2 u_2 ... v_n u_n ) / sqrt(2), and */
 | 
						||
/* >  P = [ e_{n+1} e_{1} e_{n+2} e_{2} ... ]. */
 | 
						||
/* > */
 | 
						||
/* >  Given a TGK matrix, one can either a) compute -s,-v and change signs */
 | 
						||
/* >  so that the singular values (and corresponding vectors) are already in */
 | 
						||
/* >  descending order (as in DGESVD/DGESDD) or b) compute s,v and reorder */
 | 
						||
/* >  the values (and corresponding vectors). DBDSVDX implements a) by */
 | 
						||
/* >  calling DSTEVX (bisection plus inverse iteration, to be replaced */
 | 
						||
/* >  with a version of the Multiple Relative Robust Representation */
 | 
						||
/* >  algorithm. (See P. Willems and B. Lang, A framework for the MR^3 */
 | 
						||
/* >  algorithm: theory and implementation, SIAM J. Sci. Comput., */
 | 
						||
/* >  35:740-766, 2013.) */
 | 
						||
/* > \endverbatim */
 | 
						||
 | 
						||
/*  Arguments: */
 | 
						||
/*  ========== */
 | 
						||
 | 
						||
/* > \param[in] UPLO */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          UPLO is CHARACTER*1 */
 | 
						||
/* >          = 'U':  B is upper bidiagonal; */
 | 
						||
/* >          = 'L':  B is lower bidiagonal. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] JOBZ */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          JOBZ is CHARACTER*1 */
 | 
						||
/* >          = 'N':  Compute singular values only; */
 | 
						||
/* >          = 'V':  Compute singular values and singular vectors. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] RANGE */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          RANGE is CHARACTER*1 */
 | 
						||
/* >          = 'A': all singular values will be found. */
 | 
						||
/* >          = 'V': all singular values in the half-open interval [VL,VU) */
 | 
						||
/* >                 will be found. */
 | 
						||
/* >          = 'I': the IL-th through IU-th singular values will be found. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] N */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          N is INTEGER */
 | 
						||
/* >          The order of the bidiagonal matrix.  N >= 0. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] D */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          D is DOUBLE PRECISION array, dimension (N) */
 | 
						||
/* >          The n diagonal elements of the bidiagonal matrix B. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] E */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          E is DOUBLE PRECISION array, dimension (f2cmax(1,N-1)) */
 | 
						||
/* >          The (n-1) superdiagonal elements of the bidiagonal matrix */
 | 
						||
/* >          B in elements 1 to N-1. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] VL */
 | 
						||
/* > \verbatim */
 | 
						||
/* >         VL is DOUBLE PRECISION */
 | 
						||
/* >          If RANGE='V', the lower bound of the interval to */
 | 
						||
/* >          be searched for singular values. VU > VL. */
 | 
						||
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] VU */
 | 
						||
/* > \verbatim */
 | 
						||
/* >         VU is DOUBLE PRECISION */
 | 
						||
/* >          If RANGE='V', the upper bound of the interval to */
 | 
						||
/* >          be searched for singular values. VU > VL. */
 | 
						||
/* >          Not referenced if RANGE = 'A' or 'I'. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] IL */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          IL is INTEGER */
 | 
						||
/* >          If RANGE='I', the index of the */
 | 
						||
/* >          smallest singular value to be returned. */
 | 
						||
/* >          1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
 | 
						||
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] IU */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          IU is INTEGER */
 | 
						||
/* >          If RANGE='I', the index of the */
 | 
						||
/* >          largest singular value to be returned. */
 | 
						||
/* >          1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
 | 
						||
/* >          Not referenced if RANGE = 'A' or 'V'. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[out] NS */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          NS is INTEGER */
 | 
						||
/* >          The total number of singular values found.  0 <= NS <= N. */
 | 
						||
/* >          If RANGE = 'A', NS = N, and if RANGE = 'I', NS = IU-IL+1. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[out] S */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          S is DOUBLE PRECISION array, dimension (N) */
 | 
						||
/* >          The first NS elements contain the selected singular values in */
 | 
						||
/* >          ascending order. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[out] Z */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          Z is DOUBLE PRECISION array, dimension (2*N,K) */
 | 
						||
/* >          If JOBZ = 'V', then if INFO = 0 the first NS columns of Z */
 | 
						||
/* >          contain the singular vectors of the matrix B corresponding to */
 | 
						||
/* >          the selected singular values, with U in rows 1 to N and V */
 | 
						||
/* >          in rows N+1 to N*2, i.e. */
 | 
						||
/* >          Z = [ U ] */
 | 
						||
/* >              [ V ] */
 | 
						||
/* >          If JOBZ = 'N', then Z is not referenced. */
 | 
						||
/* >          Note: The user must ensure that at least K = NS+1 columns are */
 | 
						||
/* >          supplied in the array Z; if RANGE = 'V', the exact value of */
 | 
						||
/* >          NS is not known in advance and an upper bound must be used. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[in] LDZ */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          LDZ is INTEGER */
 | 
						||
/* >          The leading dimension of the array Z. LDZ >= 1, and if */
 | 
						||
/* >          JOBZ = 'V', LDZ >= f2cmax(2,N*2). */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[out] WORK */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          WORK is DOUBLE PRECISION array, dimension (14*N) */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[out] IWORK */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          IWORK is INTEGER array, dimension (12*N) */
 | 
						||
/* >          If JOBZ = 'V', then if INFO = 0, the first NS elements of */
 | 
						||
/* >          IWORK are zero. If INFO > 0, then IWORK contains the indices */
 | 
						||
/* >          of the eigenvectors that failed to converge in DSTEVX. */
 | 
						||
/* > \endverbatim */
 | 
						||
/* > */
 | 
						||
/* > \param[out] INFO */
 | 
						||
/* > \verbatim */
 | 
						||
/* >          INFO is INTEGER */
 | 
						||
/* >          = 0:  successful exit */
 | 
						||
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						||
/* >          > 0:  if INFO = i, then i eigenvectors failed to converge */
 | 
						||
/* >                   in DSTEVX. The indices of the eigenvectors */
 | 
						||
/* >                   (as returned by DSTEVX) are stored in the */
 | 
						||
/* >                   array IWORK. */
 | 
						||
/* >                if INFO = N*2 + 1, an internal error occurred. */
 | 
						||
/* > \endverbatim */
 | 
						||
 | 
						||
/*  Authors: */
 | 
						||
/*  ======== */
 | 
						||
 | 
						||
/* > \author Univ. of Tennessee */
 | 
						||
/* > \author Univ. of California Berkeley */
 | 
						||
/* > \author Univ. of Colorado Denver */
 | 
						||
/* > \author NAG Ltd. */
 | 
						||
 | 
						||
/* > \date June 2016 */
 | 
						||
 | 
						||
/* > \ingroup doubleOTHEReigen */
 | 
						||
 | 
						||
/*  ===================================================================== */
 | 
						||
/* Subroutine */ void dbdsvdx_(char *uplo, char *jobz, char *range, integer *n,
 | 
						||
	 doublereal *d__, doublereal *e, doublereal *vl, doublereal *vu, 
 | 
						||
	integer *il, integer *iu, integer *ns, doublereal *s, doublereal *z__,
 | 
						||
	 integer *ldz, doublereal *work, integer *iwork, integer *info)
 | 
						||
{
 | 
						||
    /* System generated locals */
 | 
						||
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
 | 
						||
    doublereal d__1, d__2, d__3, d__4;
 | 
						||
 | 
						||
    /* Local variables */
 | 
						||
    doublereal emin;
 | 
						||
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | 
						||
	    integer *);
 | 
						||
    integer ntgk;
 | 
						||
    doublereal smin, smax, nrmu, nrmv;
 | 
						||
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | 
						||
    logical sveq0;
 | 
						||
    integer i__, idbeg, j, k;
 | 
						||
    doublereal sqrt2;
 | 
						||
    integer idend;
 | 
						||
    extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | 
						||
	    integer *);
 | 
						||
    integer isbeg;
 | 
						||
    extern logical lsame_(char *, char *);
 | 
						||
    integer idtgk, ietgk, iltgk, itemp;
 | 
						||
    extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | 
						||
	    doublereal *, integer *);
 | 
						||
    integer icolz;
 | 
						||
    logical allsv;
 | 
						||
    integer idptr;
 | 
						||
    logical indsv;
 | 
						||
    integer ieptr, iutgk;
 | 
						||
    extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
 | 
						||
	    integer *, doublereal *, integer *);
 | 
						||
    doublereal vltgk;
 | 
						||
    logical lower;
 | 
						||
    extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *, 
 | 
						||
	    doublereal *, integer *);
 | 
						||
    doublereal zjtji;
 | 
						||
    logical split, valsv;
 | 
						||
    integer isplt;
 | 
						||
    doublereal ortol, vutgk;
 | 
						||
    logical wantz;
 | 
						||
    char rngvx[1];
 | 
						||
    integer irowu, irowv, irowz;
 | 
						||
    extern doublereal dlamch_(char *);
 | 
						||
    integer iifail;
 | 
						||
    doublereal mu;
 | 
						||
    extern integer idamax_(integer *, doublereal *, integer *);
 | 
						||
    extern /* Subroutine */ void dlaset_(char *, integer *, integer *, 
 | 
						||
	    doublereal *, doublereal *, doublereal *, integer *); 
 | 
						||
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						||
    doublereal abstol, thresh;
 | 
						||
    integer iiwork;
 | 
						||
    extern /* Subroutine */ void dstevx_(char *, char *, integer *, doublereal 
 | 
						||
	    *, doublereal *, doublereal *, doublereal *, integer *, integer *,
 | 
						||
	     doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | 
						||
	    doublereal *, integer *, integer *, integer *), 
 | 
						||
	    mecago_();
 | 
						||
    doublereal eps;
 | 
						||
    integer nsl;
 | 
						||
    doublereal tol, ulp;
 | 
						||
    integer nru, nrv;
 | 
						||
 | 
						||
 | 
						||
/*  -- LAPACK driver routine (version 3.8.0) -- */
 | 
						||
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						||
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						||
/*     November 2017 */
 | 
						||
 | 
						||
 | 
						||
/*  ===================================================================== */
 | 
						||
 | 
						||
 | 
						||
/*     Test the input parameters. */
 | 
						||
 | 
						||
    /* Parameter adjustments */
 | 
						||
    --d__;
 | 
						||
    --e;
 | 
						||
    --s;
 | 
						||
    z_dim1 = *ldz;
 | 
						||
    z_offset = 1 + z_dim1 * 1;
 | 
						||
    z__ -= z_offset;
 | 
						||
    --work;
 | 
						||
    --iwork;
 | 
						||
 | 
						||
    /* Function Body */
 | 
						||
    allsv = lsame_(range, "A");
 | 
						||
    valsv = lsame_(range, "V");
 | 
						||
    indsv = lsame_(range, "I");
 | 
						||
    wantz = lsame_(jobz, "V");
 | 
						||
    lower = lsame_(uplo, "L");
 | 
						||
 | 
						||
    *info = 0;
 | 
						||
    if (! lsame_(uplo, "U") && ! lower) {
 | 
						||
	*info = -1;
 | 
						||
    } else if (! (wantz || lsame_(jobz, "N"))) {
 | 
						||
	*info = -2;
 | 
						||
    } else if (! (allsv || valsv || indsv)) {
 | 
						||
	*info = -3;
 | 
						||
    } else if (*n < 0) {
 | 
						||
	*info = -4;
 | 
						||
    } else if (*n > 0) {
 | 
						||
	if (valsv) {
 | 
						||
	    if (*vl < 0.) {
 | 
						||
		*info = -7;
 | 
						||
	    } else if (*vu <= *vl) {
 | 
						||
		*info = -8;
 | 
						||
	    }
 | 
						||
	} else if (indsv) {
 | 
						||
	    if (*il < 1 || *il > f2cmax(1,*n)) {
 | 
						||
		*info = -9;
 | 
						||
	    } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
 | 
						||
		*info = -10;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
    if (*info == 0) {
 | 
						||
	if (*ldz < 1 || wantz && *ldz < *n << 1) {
 | 
						||
	    *info = -14;
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
    if (*info != 0) {
 | 
						||
	i__1 = -(*info);
 | 
						||
	xerbla_("DBDSVDX", &i__1, (ftnlen)7);
 | 
						||
	return;
 | 
						||
    }
 | 
						||
 | 
						||
/*     Quick return if possible (N.LE.1) */
 | 
						||
 | 
						||
    *ns = 0;
 | 
						||
    if (*n == 0) {
 | 
						||
	return;
 | 
						||
    }
 | 
						||
 | 
						||
    if (*n == 1) {
 | 
						||
	if (allsv || indsv) {
 | 
						||
	    *ns = 1;
 | 
						||
	    s[1] = abs(d__[1]);
 | 
						||
	} else {
 | 
						||
	    if (*vl < abs(d__[1]) && *vu >= abs(d__[1])) {
 | 
						||
		*ns = 1;
 | 
						||
		s[1] = abs(d__[1]);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
	if (wantz) {
 | 
						||
	    z__[z_dim1 + 1] = d_sign(&c_b10, &d__[1]);
 | 
						||
	    z__[z_dim1 + 2] = 1.;
 | 
						||
	}
 | 
						||
	return;
 | 
						||
    }
 | 
						||
 | 
						||
    abstol = dlamch_("Safe Minimum") * 2;
 | 
						||
    ulp = dlamch_("Precision");
 | 
						||
    eps = dlamch_("Epsilon");
 | 
						||
    sqrt2 = sqrt(2.);
 | 
						||
    ortol = sqrt(ulp);
 | 
						||
 | 
						||
/*     Criterion for splitting is taken from DBDSQR when singular */
 | 
						||
/*     values are computed to relative accuracy TOL. (See J. Demmel and */
 | 
						||
/*     W. Kahan, Accurate singular values of bidiagonal matrices, SIAM */
 | 
						||
/*     J. Sci. and Stat. Comput., 11:873–912, 1990.) */
 | 
						||
 | 
						||
/* Computing MAX */
 | 
						||
/* Computing MIN */
 | 
						||
    d__3 = 100., d__4 = pow_dd(&eps, &c_b14);
 | 
						||
    d__1 = 10., d__2 = f2cmin(d__3,d__4);
 | 
						||
    tol = f2cmax(d__1,d__2) * eps;
 | 
						||
 | 
						||
/*     Compute approximate maximum, minimum singular values. */
 | 
						||
 | 
						||
    i__ = idamax_(n, &d__[1], &c__1);
 | 
						||
    smax = (d__1 = d__[i__], abs(d__1));
 | 
						||
    i__1 = *n - 1;
 | 
						||
    i__ = idamax_(&i__1, &e[1], &c__1);
 | 
						||
/* Computing MAX */
 | 
						||
    d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
 | 
						||
    smax = f2cmax(d__2,d__3);
 | 
						||
 | 
						||
/*     Compute threshold for neglecting D's and E's. */
 | 
						||
 | 
						||
    smin = abs(d__[1]);
 | 
						||
    if (smin != 0.) {
 | 
						||
	mu = smin;
 | 
						||
	i__1 = *n;
 | 
						||
	for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						||
	    mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
 | 
						||
		    , abs(d__1))));
 | 
						||
	    smin = f2cmin(smin,mu);
 | 
						||
	    if (smin == 0.) {
 | 
						||
		myexit_();
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
    smin /= sqrt((doublereal) (*n));
 | 
						||
    thresh = tol * smin;
 | 
						||
 | 
						||
/*     Check for zeros in D and E (splits), i.e. submatrices. */
 | 
						||
 | 
						||
    i__1 = *n - 1;
 | 
						||
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						||
	if ((d__1 = d__[i__], abs(d__1)) <= thresh) {
 | 
						||
	    d__[i__] = 0.;
 | 
						||
	}
 | 
						||
	if ((d__1 = e[i__], abs(d__1)) <= thresh) {
 | 
						||
	    e[i__] = 0.;
 | 
						||
	}
 | 
						||
    }
 | 
						||
    if ((d__1 = d__[*n], abs(d__1)) <= thresh) {
 | 
						||
	d__[*n] = 0.;
 | 
						||
    }
 | 
						||
 | 
						||
/*     Pointers for arrays used by DSTEVX. */
 | 
						||
 | 
						||
    idtgk = 1;
 | 
						||
    ietgk = idtgk + (*n << 1);
 | 
						||
    itemp = ietgk + (*n << 1);
 | 
						||
    iifail = 1;
 | 
						||
    iiwork = iifail + (*n << 1);
 | 
						||
 | 
						||
/*     Set RNGVX, which corresponds to RANGE for DSTEVX in TGK mode. */
 | 
						||
/*     VL,VU or IL,IU are redefined to conform to implementation a) */
 | 
						||
/*     described in the leading comments. */
 | 
						||
 | 
						||
    iltgk = 0;
 | 
						||
    iutgk = 0;
 | 
						||
    vltgk = 0.;
 | 
						||
    vutgk = 0.;
 | 
						||
 | 
						||
    if (allsv) {
 | 
						||
 | 
						||
/*        All singular values will be found. We aim at -s (see */
 | 
						||
/*        leading comments) with RNGVX = 'I'. IL and IU are set */
 | 
						||
/*        later (as ILTGK and IUTGK) according to the dimension */
 | 
						||
/*        of the active submatrix. */
 | 
						||
 | 
						||
	*(unsigned char *)rngvx = 'I';
 | 
						||
	if (wantz) {
 | 
						||
	    i__1 = *n << 1;
 | 
						||
	    i__2 = *n + 1;
 | 
						||
	    dlaset_("F", &i__1, &i__2, &c_b19, &c_b19, &z__[z_offset], ldz);
 | 
						||
	}
 | 
						||
    } else if (valsv) {
 | 
						||
 | 
						||
/*        Find singular values in a half-open interval. We aim */
 | 
						||
/*        at -s (see leading comments) and we swap VL and VU */
 | 
						||
/*        (as VUTGK and VLTGK), changing their signs. */
 | 
						||
 | 
						||
	*(unsigned char *)rngvx = 'V';
 | 
						||
	vltgk = -(*vu);
 | 
						||
	vutgk = -(*vl);
 | 
						||
	i__1 = idtgk + (*n << 1) - 1;
 | 
						||
	for (i__ = idtgk; i__ <= i__1; ++i__) {
 | 
						||
	    work[i__] = 0.;
 | 
						||
	}
 | 
						||
/*         WORK( IDTGK:IDTGK+2*N-1 ) = ZERO */
 | 
						||
	dcopy_(n, &d__[1], &c__1, &work[ietgk], &c__2);
 | 
						||
	i__1 = *n - 1;
 | 
						||
	dcopy_(&i__1, &e[1], &c__1, &work[ietgk + 1], &c__2);
 | 
						||
	i__1 = *n << 1;
 | 
						||
	dstevx_("N", "V", &i__1, &work[idtgk], &work[ietgk], &vltgk, &vutgk, &
 | 
						||
		iltgk, &iltgk, &abstol, ns, &s[1], &z__[z_offset], ldz, &work[
 | 
						||
		itemp], &iwork[iiwork], &iwork[iifail], info);
 | 
						||
	if (*ns == 0) {
 | 
						||
	    return;
 | 
						||
	} else {
 | 
						||
	    if (wantz) {
 | 
						||
		i__1 = *n << 1;
 | 
						||
		dlaset_("F", &i__1, ns, &c_b19, &c_b19, &z__[z_offset], ldz);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    } else if (indsv) {
 | 
						||
 | 
						||
/*        Find the IL-th through the IU-th singular values. We aim */
 | 
						||
/*        at -s (see leading comments) and indices are mapped into */
 | 
						||
/*        values, therefore mimicking DSTEBZ, where */
 | 
						||
 | 
						||
/*        GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN */
 | 
						||
/*        GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN */
 | 
						||
 | 
						||
	iltgk = *il;
 | 
						||
	iutgk = *iu;
 | 
						||
	*(unsigned char *)rngvx = 'V';
 | 
						||
	i__1 = idtgk + (*n << 1) - 1;
 | 
						||
	for (i__ = idtgk; i__ <= i__1; ++i__) {
 | 
						||
	    work[i__] = 0.;
 | 
						||
	}
 | 
						||
/*         WORK( IDTGK:IDTGK+2*N-1 ) = ZERO */
 | 
						||
	dcopy_(n, &d__[1], &c__1, &work[ietgk], &c__2);
 | 
						||
	i__1 = *n - 1;
 | 
						||
	dcopy_(&i__1, &e[1], &c__1, &work[ietgk + 1], &c__2);
 | 
						||
	i__1 = *n << 1;
 | 
						||
	dstevx_("N", "I", &i__1, &work[idtgk], &work[ietgk], &vltgk, &vltgk, &
 | 
						||
		iltgk, &iltgk, &abstol, ns, &s[1], &z__[z_offset], ldz, &work[
 | 
						||
		itemp], &iwork[iiwork], &iwork[iifail], info);
 | 
						||
	vltgk = s[1] - smax * 2. * ulp * *n;
 | 
						||
	i__1 = idtgk + (*n << 1) - 1;
 | 
						||
	for (i__ = idtgk; i__ <= i__1; ++i__) {
 | 
						||
	    work[i__] = 0.;
 | 
						||
	}
 | 
						||
/*         WORK( IDTGK:IDTGK+2*N-1 ) = ZERO */
 | 
						||
	dcopy_(n, &d__[1], &c__1, &work[ietgk], &c__2);
 | 
						||
	i__1 = *n - 1;
 | 
						||
	dcopy_(&i__1, &e[1], &c__1, &work[ietgk + 1], &c__2);
 | 
						||
	i__1 = *n << 1;
 | 
						||
	dstevx_("N", "I", &i__1, &work[idtgk], &work[ietgk], &vutgk, &vutgk, &
 | 
						||
		iutgk, &iutgk, &abstol, ns, &s[1], &z__[z_offset], ldz, &work[
 | 
						||
		itemp], &iwork[iiwork], &iwork[iifail], info);
 | 
						||
	vutgk = s[1] + smax * 2. * ulp * *n;
 | 
						||
	vutgk = f2cmin(vutgk,0.);
 | 
						||
 | 
						||
/*        If VLTGK=VUTGK, DSTEVX returns an error message, */
 | 
						||
/*        so if needed we change VUTGK slightly. */
 | 
						||
 | 
						||
	if (vltgk == vutgk) {
 | 
						||
	    vltgk -= tol;
 | 
						||
	}
 | 
						||
 | 
						||
	if (wantz) {
 | 
						||
	    i__1 = *n << 1;
 | 
						||
	    i__2 = *iu - *il + 1;
 | 
						||
	    dlaset_("F", &i__1, &i__2, &c_b19, &c_b19, &z__[z_offset], ldz);
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
/*     Initialize variables and pointers for S, Z, and WORK. */
 | 
						||
 | 
						||
/*     NRU, NRV: number of rows in U and V for the active submatrix */
 | 
						||
/*     IDBEG, ISBEG: offsets for the entries of D and S */
 | 
						||
/*     IROWZ, ICOLZ: offsets for the rows and columns of Z */
 | 
						||
/*     IROWU, IROWV: offsets for the rows of U and V */
 | 
						||
 | 
						||
    *ns = 0;
 | 
						||
    nru = 0;
 | 
						||
    nrv = 0;
 | 
						||
    idbeg = 1;
 | 
						||
    isbeg = 1;
 | 
						||
    irowz = 1;
 | 
						||
    icolz = 1;
 | 
						||
    irowu = 2;
 | 
						||
    irowv = 1;
 | 
						||
    split = FALSE_;
 | 
						||
    sveq0 = FALSE_;
 | 
						||
 | 
						||
/*     Form the tridiagonal TGK matrix. */
 | 
						||
 | 
						||
    i__1 = *n;
 | 
						||
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						||
	s[i__] = 0.;
 | 
						||
    }
 | 
						||
/*      S( 1:N ) = ZERO */
 | 
						||
    work[ietgk + (*n << 1) - 1] = 0.;
 | 
						||
    i__1 = idtgk + (*n << 1) - 1;
 | 
						||
    for (i__ = idtgk; i__ <= i__1; ++i__) {
 | 
						||
	work[i__] = 0.;
 | 
						||
    }
 | 
						||
/*      WORK( IDTGK:IDTGK+2*N-1 ) = ZERO */
 | 
						||
    dcopy_(n, &d__[1], &c__1, &work[ietgk], &c__2);
 | 
						||
    i__1 = *n - 1;
 | 
						||
    dcopy_(&i__1, &e[1], &c__1, &work[ietgk + 1], &c__2);
 | 
						||
 | 
						||
 | 
						||
/*     Check for splits in two levels, outer level */
 | 
						||
/*     in E and inner level in D. */
 | 
						||
 | 
						||
    i__1 = *n << 1;
 | 
						||
    for (ieptr = 2; ieptr <= i__1; ieptr += 2) {
 | 
						||
	if (work[ietgk + ieptr - 1] == 0.) {
 | 
						||
 | 
						||
/*           Split in E (this piece of B is square) or bottom */
 | 
						||
/*           of the (input bidiagonal) matrix. */
 | 
						||
 | 
						||
	    isplt = idbeg;
 | 
						||
	    idend = ieptr - 1;
 | 
						||
	    i__2 = idend;
 | 
						||
	    for (idptr = idbeg; idptr <= i__2; idptr += 2) {
 | 
						||
		if (work[ietgk + idptr - 1] == 0.) {
 | 
						||
 | 
						||
/*                 Split in D (rectangular submatrix). Set the number */
 | 
						||
/*                 of rows in U and V (NRU and NRV) accordingly. */
 | 
						||
 | 
						||
		    if (idptr == idbeg) {
 | 
						||
 | 
						||
/*                    D=0 at the top. */
 | 
						||
 | 
						||
			sveq0 = TRUE_;
 | 
						||
			if (idbeg == idend) {
 | 
						||
			    nru = 1;
 | 
						||
			    nrv = 1;
 | 
						||
			}
 | 
						||
		    } else if (idptr == idend) {
 | 
						||
 | 
						||
/*                    D=0 at the bottom. */
 | 
						||
 | 
						||
			sveq0 = TRUE_;
 | 
						||
			nru = (idend - isplt) / 2 + 1;
 | 
						||
			nrv = nru;
 | 
						||
			if (isplt != idbeg) {
 | 
						||
			    ++nru;
 | 
						||
			}
 | 
						||
		    } else {
 | 
						||
			if (isplt == idbeg) {
 | 
						||
 | 
						||
/*                       Split: top rectangular submatrix. */
 | 
						||
 | 
						||
			    nru = (idptr - idbeg) / 2;
 | 
						||
			    nrv = nru + 1;
 | 
						||
			} else {
 | 
						||
 | 
						||
/*                       Split: middle square submatrix. */
 | 
						||
 | 
						||
			    nru = (idptr - isplt) / 2 + 1;
 | 
						||
			    nrv = nru;
 | 
						||
			}
 | 
						||
		    }
 | 
						||
		} else if (idptr == idend) {
 | 
						||
 | 
						||
/*                 Last entry of D in the active submatrix. */
 | 
						||
 | 
						||
		    if (isplt == idbeg) {
 | 
						||
 | 
						||
/*                    No split (trivial case). */
 | 
						||
 | 
						||
			nru = (idend - idbeg) / 2 + 1;
 | 
						||
			nrv = nru;
 | 
						||
		    } else {
 | 
						||
 | 
						||
/*                    Split: bottom rectangular submatrix. */
 | 
						||
 | 
						||
			nrv = (idend - isplt) / 2 + 1;
 | 
						||
			nru = nrv + 1;
 | 
						||
		    }
 | 
						||
		}
 | 
						||
 | 
						||
		ntgk = nru + nrv;
 | 
						||
 | 
						||
		if (ntgk > 0) {
 | 
						||
 | 
						||
/*                 Compute eigenvalues/vectors of the active */
 | 
						||
/*                 submatrix according to RANGE: */
 | 
						||
/*                 if RANGE='A' (ALLSV) then RNGVX = 'I' */
 | 
						||
/*                 if RANGE='V' (VALSV) then RNGVX = 'V' */
 | 
						||
/*                 if RANGE='I' (INDSV) then RNGVX = 'V' */
 | 
						||
 | 
						||
		    iltgk = 1;
 | 
						||
		    iutgk = ntgk / 2;
 | 
						||
		    if (allsv || vutgk == 0.) {
 | 
						||
			if (sveq0 || smin < eps || ntgk % 2 > 0) {
 | 
						||
/*                        Special case: eigenvalue equal to zero or very */
 | 
						||
/*                        small, additional eigenvector is needed. */
 | 
						||
			    ++iutgk;
 | 
						||
			}
 | 
						||
		    }
 | 
						||
 | 
						||
/*                 Workspace needed by DSTEVX: */
 | 
						||
/*                 WORK( ITEMP: ): 2*5*NTGK */
 | 
						||
/*                 IWORK( 1: ): 2*6*NTGK */
 | 
						||
 | 
						||
		    dstevx_(jobz, rngvx, &ntgk, &work[idtgk + isplt - 1], &
 | 
						||
			    work[ietgk + isplt - 1], &vltgk, &vutgk, &iltgk, &
 | 
						||
			    iutgk, &abstol, &nsl, &s[isbeg], &z__[irowz + 
 | 
						||
			    icolz * z_dim1], ldz, &work[itemp], &iwork[iiwork]
 | 
						||
			    , &iwork[iifail], info);
 | 
						||
		    if (*info != 0) {
 | 
						||
/*                    Exit with the error code from DSTEVX. */
 | 
						||
			return;
 | 
						||
		    }
 | 
						||
		    emin = (d__1 = s[isbeg], abs(d__1));
 | 
						||
		    i__3 = isbeg + nsl - 1;
 | 
						||
		    for (i__ = isbeg; i__ <= i__3; ++i__) {
 | 
						||
			if ((d__1 = s[i__], abs(d__1)) > emin) {
 | 
						||
			    emin = s[i__];
 | 
						||
			}
 | 
						||
		    }
 | 
						||
/*                  EMIN = ABS( MAXVAL( S( ISBEG:ISBEG+NSL-1 ) ) ) */
 | 
						||
 | 
						||
		    if (nsl > 0 && wantz) {
 | 
						||
 | 
						||
/*                    Normalize u=Z([2,4,...],:) and v=Z([1,3,...],:), */
 | 
						||
/*                    changing the sign of v as discussed in the leading */
 | 
						||
/*                    comments. The norms of u and v may be (slightly) */
 | 
						||
/*                    different from 1/sqrt(2) if the corresponding */
 | 
						||
/*                    eigenvalues are very small or too close. We check */
 | 
						||
/*                    those norms and, if needed, reorthogonalize the */
 | 
						||
/*                    vectors. */
 | 
						||
 | 
						||
			if (nsl > 1 && vutgk == 0. && ntgk % 2 == 0 && emin ==
 | 
						||
				 0. && ! split) {
 | 
						||
 | 
						||
/*                       D=0 at the top or bottom of the active submatrix: */
 | 
						||
/*                       one eigenvalue is equal to zero; concatenate the */
 | 
						||
/*                       eigenvectors corresponding to the two smallest */
 | 
						||
/*                       eigenvalues. */
 | 
						||
 | 
						||
			    i__3 = irowz + ntgk - 1;
 | 
						||
			    for (i__ = irowz; i__ <= i__3; ++i__) {
 | 
						||
				z__[i__ + (icolz + nsl - 2) * z_dim1] += z__[
 | 
						||
					i__ + (icolz + nsl - 1) * z_dim1];
 | 
						||
				z__[i__ + (icolz + nsl - 1) * z_dim1] = 0.;
 | 
						||
			    }
 | 
						||
/*                        Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) = */
 | 
						||
/*     $                  Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) + */
 | 
						||
/*     $                  Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 ) */
 | 
						||
/*                        Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 ) = */
 | 
						||
/*     $                  ZERO */
 | 
						||
/*                       IF( IUTGK*2.GT.NTGK ) THEN */
 | 
						||
/*                          Eigenvalue equal to zero or very small. */
 | 
						||
/*                          NSL = NSL - 1 */
 | 
						||
/*                       END IF */
 | 
						||
			}
 | 
						||
 | 
						||
/* Computing MIN */
 | 
						||
			i__4 = nsl - 1, i__5 = nru - 1;
 | 
						||
			i__3 = f2cmin(i__4,i__5);
 | 
						||
			for (i__ = 0; i__ <= i__3; ++i__) {
 | 
						||
			    nrmu = dnrm2_(&nru, &z__[irowu + (icolz + i__) * 
 | 
						||
				    z_dim1], &c__2);
 | 
						||
			    if (nrmu == 0.) {
 | 
						||
				*info = (*n << 1) + 1;
 | 
						||
				return;
 | 
						||
			    }
 | 
						||
			    d__1 = 1. / nrmu;
 | 
						||
			    dscal_(&nru, &d__1, &z__[irowu + (icolz + i__) * 
 | 
						||
				    z_dim1], &c__2);
 | 
						||
			    if (nrmu != 1. && (d__1 = nrmu - ortol, abs(d__1))
 | 
						||
				     * sqrt2 > 1.) {
 | 
						||
				i__4 = i__ - 1;
 | 
						||
				for (j = 0; j <= i__4; ++j) {
 | 
						||
				    zjtji = -ddot_(&nru, &z__[irowu + (icolz 
 | 
						||
					    + j) * z_dim1], &c__2, &z__[irowu 
 | 
						||
					    + (icolz + i__) * z_dim1], &c__2);
 | 
						||
				    daxpy_(&nru, &zjtji, &z__[irowu + (icolz 
 | 
						||
					    + j) * z_dim1], &c__2, &z__[irowu 
 | 
						||
					    + (icolz + i__) * z_dim1], &c__2);
 | 
						||
				}
 | 
						||
				nrmu = dnrm2_(&nru, &z__[irowu + (icolz + i__)
 | 
						||
					 * z_dim1], &c__2);
 | 
						||
				d__1 = 1. / nrmu;
 | 
						||
				dscal_(&nru, &d__1, &z__[irowu + (icolz + i__)
 | 
						||
					 * z_dim1], &c__2);
 | 
						||
			    }
 | 
						||
			}
 | 
						||
/* Computing MIN */
 | 
						||
			i__4 = nsl - 1, i__5 = nrv - 1;
 | 
						||
			i__3 = f2cmin(i__4,i__5);
 | 
						||
			for (i__ = 0; i__ <= i__3; ++i__) {
 | 
						||
			    nrmv = dnrm2_(&nrv, &z__[irowv + (icolz + i__) * 
 | 
						||
				    z_dim1], &c__2);
 | 
						||
			    if (nrmv == 0.) {
 | 
						||
				*info = (*n << 1) + 1;
 | 
						||
				return;
 | 
						||
			    }
 | 
						||
			    d__1 = -1. / nrmv;
 | 
						||
			    dscal_(&nrv, &d__1, &z__[irowv + (icolz + i__) * 
 | 
						||
				    z_dim1], &c__2);
 | 
						||
			    if (nrmv != 1. && (d__1 = nrmv - ortol, abs(d__1))
 | 
						||
				     * sqrt2 > 1.) {
 | 
						||
				i__4 = i__ - 1;
 | 
						||
				for (j = 0; j <= i__4; ++j) {
 | 
						||
				    zjtji = -ddot_(&nrv, &z__[irowv + (icolz 
 | 
						||
					    + j) * z_dim1], &c__2, &z__[irowv 
 | 
						||
					    + (icolz + i__) * z_dim1], &c__2);
 | 
						||
				    daxpy_(&nru, &zjtji, &z__[irowv + (icolz 
 | 
						||
					    + j) * z_dim1], &c__2, &z__[irowv 
 | 
						||
					    + (icolz + i__) * z_dim1], &c__2);
 | 
						||
				}
 | 
						||
				nrmv = dnrm2_(&nrv, &z__[irowv + (icolz + i__)
 | 
						||
					 * z_dim1], &c__2);
 | 
						||
				d__1 = 1. / nrmv;
 | 
						||
				dscal_(&nrv, &d__1, &z__[irowv + (icolz + i__)
 | 
						||
					 * z_dim1], &c__2);
 | 
						||
			    }
 | 
						||
			}
 | 
						||
			if (vutgk == 0. && idptr < idend && ntgk % 2 > 0) {
 | 
						||
 | 
						||
/*                       D=0 in the middle of the active submatrix (one */
 | 
						||
/*                       eigenvalue is equal to zero): save the corresponding */
 | 
						||
/*                       eigenvector for later use (when bottom of the */
 | 
						||
/*                       active submatrix is reached). */
 | 
						||
 | 
						||
			    split = TRUE_;
 | 
						||
			    i__3 = irowz + ntgk - 1;
 | 
						||
			    for (i__ = irowz; i__ <= i__3; ++i__) {
 | 
						||
				z__[i__ + (*n + 1) * z_dim1] = z__[i__ + (*ns 
 | 
						||
					+ nsl) * z_dim1];
 | 
						||
				z__[i__ + (*ns + nsl) * z_dim1] = 0.;
 | 
						||
			    }
 | 
						||
/*                        Z( IROWZ:IROWZ+NTGK-1,N+1 ) = */
 | 
						||
/*     $                     Z( IROWZ:IROWZ+NTGK-1,NS+NSL ) */
 | 
						||
/*                        Z( IROWZ:IROWZ+NTGK-1,NS+NSL ) = */
 | 
						||
/*     $                     ZERO */
 | 
						||
			}
 | 
						||
		    }
 | 
						||
 | 
						||
/* ** WANTZ **! */
 | 
						||
		    nsl = f2cmin(nsl,nru);
 | 
						||
		    sveq0 = FALSE_;
 | 
						||
 | 
						||
/*                 Absolute values of the eigenvalues of TGK. */
 | 
						||
 | 
						||
		    i__3 = nsl - 1;
 | 
						||
		    for (i__ = 0; i__ <= i__3; ++i__) {
 | 
						||
			s[isbeg + i__] = (d__1 = s[isbeg + i__], abs(d__1));
 | 
						||
		    }
 | 
						||
 | 
						||
/*                 Update pointers for TGK, S and Z. */
 | 
						||
 | 
						||
		    isbeg += nsl;
 | 
						||
		    irowz += ntgk;
 | 
						||
		    icolz += nsl;
 | 
						||
		    irowu = irowz;
 | 
						||
		    irowv = irowz + 1;
 | 
						||
		    isplt = idptr + 1;
 | 
						||
		    *ns += nsl;
 | 
						||
		    nru = 0;
 | 
						||
		    nrv = 0;
 | 
						||
		}
 | 
						||
/* ** NTGK.GT.0 **! */
 | 
						||
		if (irowz < *n << 1 && wantz) {
 | 
						||
		    i__3 = irowz - 1;
 | 
						||
		    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						||
			z__[i__ + icolz * z_dim1] = 0.;
 | 
						||
		    }
 | 
						||
/*                       Z( 1:IROWZ-1, ICOLZ ) = ZERO */
 | 
						||
		}
 | 
						||
	    }
 | 
						||
/* ** IDPTR loop **! */
 | 
						||
	    if (split && wantz) {
 | 
						||
 | 
						||
/*              Bring back eigenvector corresponding */
 | 
						||
/*              to eigenvalue equal to zero. */
 | 
						||
 | 
						||
		i__2 = idend - ntgk + 1;
 | 
						||
		for (i__ = idbeg; i__ <= i__2; ++i__) {
 | 
						||
		    z__[i__ + (isbeg - 1) * z_dim1] += z__[i__ + (*n + 1) * 
 | 
						||
			    z_dim1];
 | 
						||
		    z__[i__ + (*n + 1) * z_dim1] = 0.;
 | 
						||
		}
 | 
						||
/*               Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) = */
 | 
						||
/*     $         Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) + */
 | 
						||
/*     $         Z( IDBEG:IDEND-NTGK+1,N+1 ) */
 | 
						||
/*               Z( IDBEG:IDEND-NTGK+1,N+1 ) = 0 */
 | 
						||
	    }
 | 
						||
	    --irowv;
 | 
						||
	    ++irowu;
 | 
						||
	    idbeg = ieptr + 1;
 | 
						||
	    sveq0 = FALSE_;
 | 
						||
	    split = FALSE_;
 | 
						||
	}
 | 
						||
/* ** Check for split in E **! */
 | 
						||
    }
 | 
						||
 | 
						||
/*     Sort the singular values into decreasing order (insertion sort on */
 | 
						||
/*     singular values, but only one transposition per singular vector) */
 | 
						||
 | 
						||
/* ** IEPTR loop **! */
 | 
						||
    i__1 = *ns - 1;
 | 
						||
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						||
	k = 1;
 | 
						||
	smin = s[1];
 | 
						||
	i__2 = *ns + 1 - i__;
 | 
						||
	for (j = 2; j <= i__2; ++j) {
 | 
						||
	    if (s[j] <= smin) {
 | 
						||
		k = j;
 | 
						||
		smin = s[j];
 | 
						||
	    }
 | 
						||
	}
 | 
						||
	if (k != *ns + 1 - i__) {
 | 
						||
	    s[k] = s[*ns + 1 - i__];
 | 
						||
	    s[*ns + 1 - i__] = smin;
 | 
						||
	    if (wantz) {
 | 
						||
		i__2 = *n << 1;
 | 
						||
		dswap_(&i__2, &z__[k * z_dim1 + 1], &c__1, &z__[(*ns + 1 - 
 | 
						||
			i__) * z_dim1 + 1], &c__1);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
/*     If RANGE=I, check for singular values/vectors to be discarded. */
 | 
						||
 | 
						||
    if (indsv) {
 | 
						||
	k = *iu - *il + 1;
 | 
						||
	if (k < *ns) {
 | 
						||
	    i__1 = *ns;
 | 
						||
	    for (i__ = k + 1; i__ <= i__1; ++i__) {
 | 
						||
		s[i__] = 0.;
 | 
						||
	    }
 | 
						||
/*            S( K+1:NS ) = ZERO */
 | 
						||
	    if (wantz) {
 | 
						||
		i__1 = *n << 1;
 | 
						||
		for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						||
		    i__2 = *ns;
 | 
						||
		    for (j = k + 1; j <= i__2; ++j) {
 | 
						||
			z__[i__ + j * z_dim1] = 0.;
 | 
						||
		    }
 | 
						||
		}
 | 
						||
/*           Z( 1:N*2,K+1:NS ) = ZERO */
 | 
						||
	    }
 | 
						||
	    *ns = k;
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
/*     Reorder Z: U = Z( 1:N,1:NS ), V = Z( N+1:N*2,1:NS ). */
 | 
						||
/*     If B is a lower diagonal, swap U and V. */
 | 
						||
 | 
						||
    if (wantz) {
 | 
						||
	i__1 = *ns;
 | 
						||
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						||
	    i__2 = *n << 1;
 | 
						||
	    dcopy_(&i__2, &z__[i__ * z_dim1 + 1], &c__1, &work[1], &c__1);
 | 
						||
	    if (lower) {
 | 
						||
		dcopy_(n, &work[2], &c__2, &z__[*n + 1 + i__ * z_dim1], &c__1)
 | 
						||
			;
 | 
						||
		dcopy_(n, &work[1], &c__2, &z__[i__ * z_dim1 + 1], &c__1);
 | 
						||
	    } else {
 | 
						||
		dcopy_(n, &work[2], &c__2, &z__[i__ * z_dim1 + 1], &c__1);
 | 
						||
		dcopy_(n, &work[1], &c__2, &z__[*n + 1 + i__ * z_dim1], &c__1)
 | 
						||
			;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
    return;
 | 
						||
 | 
						||
/*     End of DBDSVDX */
 | 
						||
 | 
						||
} /* dbdsvdx_ */
 | 
						||
 |