221 lines
10 KiB
C
221 lines
10 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#if !defined(DOUBLE)
|
|
#define RVV_EFLOAT RVV_E32
|
|
#define RVV_M RVV_M4
|
|
#define FLOAT_V_T float32xm4_t
|
|
#define VLEV_FLOAT vlev_float32xm4
|
|
#define VLSEV_FLOAT vlsev_float32xm4
|
|
#define VFREDSUM_FLOAT vfredsumvs_float32xm4
|
|
#define VFMACCVV_FLOAT vfmaccvv_float32xm4
|
|
#define VFMVVF_FLOAT vfmvvf_float32xm4
|
|
#define VFDOTVV_FLOAT vfdotvv_float32xm4
|
|
#define ABS fabsf
|
|
#define MASK_T e32xm4_t
|
|
#define VFRSUBVF_MASK_FLOAT vfrsubvf_mask_float32xm4
|
|
#define VMFGTVF_FLOAT vmfgtvf_e32xm4_float32xm4
|
|
#define VMFIRSTM vmfirstm_e32xm4
|
|
#define VFDIVVF_FLOAT vfdivvf_float32xm4
|
|
#define VMFLTVF_FLOAT vmfltvf_e32xm4_float32xm4
|
|
#define VFREDMAXVS_FLOAT vfredmaxvs_float32xm4
|
|
#else
|
|
#define RVV_EFLOAT RVV_E64
|
|
#define RVV_M RVV_M4
|
|
#define FLOAT_V_T float64xm4_t
|
|
#define VLEV_FLOAT vlev_float64xm4
|
|
#define VLSEV_FLOAT vlsev_float64xm4
|
|
#define VFREDSUM_FLOAT vfredsumvs_float64xm4
|
|
#define VFMACCVV_FLOAT vfmaccvv_float64xm4
|
|
#define VFMVVF_FLOAT vfmvvf_float64xm4
|
|
#define VFDOTVV_FLOAT vfdotvv_float64xm4
|
|
#define ABS fabs
|
|
#define MASK_T e64xm4_t
|
|
#define VFRSUBVF_MASK_FLOAT vfrsubvf_mask_float64xm4
|
|
#define VMFGTVF_FLOAT vmfgtvf_e64xm4_float64xm4
|
|
#define VMFIRSTM vmfirstm_e64xm4
|
|
#define VFDIVVF_FLOAT vfdivvf_float64xm4
|
|
#define VMFLTVF_FLOAT vmfltvf_e64xm4_float64xm4
|
|
#define VFREDMAXVS_FLOAT vfredmaxvs_float64xm4
|
|
#endif
|
|
|
|
FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x)
|
|
{
|
|
BLASLONG i=0, j=0;
|
|
|
|
if ( n < 0 ) return(0.0);
|
|
if(n == 1) return (ABS(x[0]));
|
|
|
|
FLOAT_V_T vr, v0, v_zero;
|
|
unsigned int gvl = 0;
|
|
FLOAT scale = 0.0, ssq = 0.0;
|
|
MASK_T mask;
|
|
BLASLONG index = 0;
|
|
if(inc_x == 1){
|
|
gvl = vsetvli(n, RVV_EFLOAT, RVV_M);
|
|
vr = VFMVVF_FLOAT(0, gvl);
|
|
v_zero = VFMVVF_FLOAT(0, gvl);
|
|
for(i=0,j=0; i<n/gvl; i++){
|
|
v0 = VLEV_FLOAT(&x[j], gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(v0, 0, gvl);
|
|
v0 = VFRSUBVF_MASK_FLOAT(v0, v0, 0, mask, gvl);
|
|
//if scale change
|
|
mask = VMFGTVF_FLOAT(v0, scale, gvl);
|
|
index = VMFIRSTM(mask, gvl);
|
|
if(index == -1){//no elements greater than scale
|
|
if(scale != 0.0){
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
vr = VFMACCVV_FLOAT(vr, v0, v0, gvl);
|
|
}
|
|
}else{//found greater element
|
|
//ssq in vector vr: vr[0]
|
|
vr = VFREDSUM_FLOAT(vr, v_zero, gvl);
|
|
//total ssq before current vector
|
|
ssq += vr[0];
|
|
//find max
|
|
vr = VFREDMAXVS_FLOAT(v0, v_zero, gvl);
|
|
//update ssq before max_index
|
|
ssq = ssq * (scale/vr[0])*(scale/vr[0]);
|
|
//update scale
|
|
scale = vr[0];
|
|
//ssq in vector vr
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
vr = VFMACCVV_FLOAT(v_zero, v0, v0, gvl);
|
|
}
|
|
j += gvl;
|
|
}
|
|
//ssq in vector vr: vr[0]
|
|
vr = VFREDSUM_FLOAT(vr, v_zero, gvl);
|
|
//total ssq now
|
|
ssq += vr[0];
|
|
|
|
//tail
|
|
if(j < n){
|
|
gvl = vsetvli(n-j, RVV_EFLOAT, RVV_M);
|
|
v0 = VLEV_FLOAT(&x[j], gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(v0, 0, gvl);
|
|
v0 = VFRSUBVF_MASK_FLOAT(v0, v0, 0, mask, gvl);
|
|
//if scale change
|
|
mask = VMFGTVF_FLOAT(v0, scale, gvl);
|
|
index = VMFIRSTM(mask, gvl);
|
|
if(index == -1){//no elements greater than scale
|
|
if(scale != 0.0)
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
}else{//found greater element
|
|
//find max
|
|
vr = VFREDMAXVS_FLOAT(v0, v_zero, gvl);
|
|
//update ssq before max_index
|
|
ssq = ssq * (scale/vr[0])*(scale/vr[0]);
|
|
//update scale
|
|
scale = vr[0];
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
}
|
|
vr = VFMACCVV_FLOAT(v_zero, v0, v0, gvl);
|
|
//ssq in vector vr: vr[0]
|
|
vr = VFREDSUM_FLOAT(vr, v_zero, gvl);
|
|
//total ssq now
|
|
ssq += vr[0];
|
|
}
|
|
}else{
|
|
gvl = vsetvli(n, RVV_EFLOAT, RVV_M);
|
|
vr = VFMVVF_FLOAT(0, gvl);
|
|
v_zero = VFMVVF_FLOAT(0, gvl);
|
|
unsigned int stride_x = inc_x * sizeof(FLOAT);
|
|
int idx = 0, inc_v = inc_x * gvl;
|
|
for(i=0,j=0; i<n/gvl; i++){
|
|
v0 = VLSEV_FLOAT(&x[idx], stride_x, gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(v0, 0, gvl);
|
|
v0 = VFRSUBVF_MASK_FLOAT(v0, v0, 0, mask, gvl);
|
|
//if scale change
|
|
mask = VMFGTVF_FLOAT(v0, scale, gvl);
|
|
index = VMFIRSTM(mask, gvl);
|
|
if(index == -1){//no elements greater than scale
|
|
if(scale != 0.0){
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
vr = VFMACCVV_FLOAT(vr, v0, v0, gvl);
|
|
}
|
|
}else{//found greater element
|
|
//ssq in vector vr: vr[0]
|
|
vr = VFREDSUM_FLOAT(vr, v_zero, gvl);
|
|
//total ssq before current vector
|
|
ssq += vr[0];
|
|
//find max
|
|
vr = VFREDMAXVS_FLOAT(v0, v_zero, gvl);
|
|
//update ssq before max_index
|
|
ssq = ssq * (scale/vr[0])*(scale/vr[0]);
|
|
//update scale
|
|
scale = vr[0];
|
|
//ssq in vector vr
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
vr = VFMACCVV_FLOAT(v_zero, v0, v0, gvl);
|
|
}
|
|
j += gvl;
|
|
idx += inc_v;
|
|
}
|
|
//ssq in vector vr: vr[0]
|
|
vr = VFREDSUM_FLOAT(vr, v_zero, gvl);
|
|
//total ssq now
|
|
ssq += vr[0];
|
|
|
|
//tail
|
|
if(j < n){
|
|
gvl = vsetvli(n-j, RVV_EFLOAT, RVV_M);
|
|
v0 = VLSEV_FLOAT(&x[idx], stride_x, gvl);
|
|
//fabs(vector)
|
|
mask = VMFLTVF_FLOAT(v0, 0, gvl);
|
|
v0 = VFRSUBVF_MASK_FLOAT(v0, v0, 0, mask, gvl);
|
|
//if scale change
|
|
mask = VMFGTVF_FLOAT(v0, scale, gvl);
|
|
index = VMFIRSTM(mask, gvl);
|
|
if(index == -1){//no elements greater than scale
|
|
if(scale != 0.0)
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
}else{//found greater element
|
|
//find max
|
|
vr = VFREDMAXVS_FLOAT(v0, v_zero, gvl);
|
|
//update ssq before max_index
|
|
ssq = ssq * (scale/vr[0])*(scale/vr[0]);
|
|
//update scale
|
|
scale = vr[0];
|
|
v0 = VFDIVVF_FLOAT(v0, scale, gvl);
|
|
}
|
|
vr = VFMACCVV_FLOAT(v_zero, v0, v0, gvl);
|
|
//ssq in vector vr: vr[0]
|
|
vr = VFREDSUM_FLOAT(vr, v_zero, gvl);
|
|
//total ssq now
|
|
ssq += vr[0];
|
|
}
|
|
}
|
|
return(scale * sqrt(ssq));
|
|
}
|
|
|
|
|