267 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPBT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
 | 
						|
*                          RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            KD, LDA, LDAFAC, N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPBT01 reconstructs a Hermitian positive definite band matrix A from
 | 
						|
*> its L*L' or U'*U factorization and computes the residual
 | 
						|
*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 | 
						|
*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon, L' is the conjugate transpose of
 | 
						|
*> L, and U' is the conjugate transpose of U.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The original Hermitian band matrix A.  If UPLO = 'U', the
 | 
						|
*>          upper triangular part of A is stored as a band matrix; if
 | 
						|
*>          UPLO = 'L', the lower triangular part of A is stored.  The
 | 
						|
*>          columns of the appropriate triangle are stored in the columns
 | 
						|
*>          of A and the diagonals of the triangle are stored in the rows
 | 
						|
*>          of A.  See ZPBTRF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER.
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,KD+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
 | 
						|
*>          The factored form of the matrix A.  AFAC contains the factor
 | 
						|
*>          L or U from the L*L' or U'*U factorization in band storage
 | 
						|
*>          format, as computed by ZPBTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.
 | 
						|
*>          LDAFAC >= max(1,KD+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            KD, LDA, LDAFAC, N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, K, KC, KLEN, ML, MU
 | 
						|
      DOUBLE PRECISION   AKK, ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHB
 | 
						|
      COMPLEX*16         ZDOTC
 | 
						|
      EXTERNAL           LSAME, DLAMCH, ZLANHB, ZDOTC
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZDSCAL, ZHER, ZTRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DIMAG, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = ZLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check the imaginary parts of the diagonal elements and return with
 | 
						|
*     an error code if any are nonzero.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 10 J = 1, N
 | 
						|
            IF( DIMAG( AFAC( KD+1, J ) ).NE.ZERO ) THEN
 | 
						|
               RESID = ONE / EPS
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 20 J = 1, N
 | 
						|
            IF( DIMAG( AFAC( 1, J ) ).NE.ZERO ) THEN
 | 
						|
               RESID = ONE / EPS
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the product U'*U, overwriting U.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 30 K = N, 1, -1
 | 
						|
            KC = MAX( 1, KD+2-K )
 | 
						|
            KLEN = KD + 1 - KC
 | 
						|
*
 | 
						|
*           Compute the (K,K) element of the result.
 | 
						|
*
 | 
						|
            AKK = DBLE(
 | 
						|
     $         ZDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 ) )
 | 
						|
            AFAC( KD+1, K ) = AKK
 | 
						|
*
 | 
						|
*           Compute the rest of column K.
 | 
						|
*
 | 
						|
            IF( KLEN.GT.0 )
 | 
						|
     $         CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', KLEN,
 | 
						|
     $                     AFAC( KD+1, K-KLEN ), LDAFAC-1,
 | 
						|
     $                     AFAC( KC, K ), 1 )
 | 
						|
*
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*     UPLO = 'L':  Compute the product L*L', overwriting L.
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
         DO 40 K = N, 1, -1
 | 
						|
            KLEN = MIN( KD, N-K )
 | 
						|
*
 | 
						|
*           Add a multiple of column K of the factor L to each of
 | 
						|
*           columns K+1 through N.
 | 
						|
*
 | 
						|
            IF( KLEN.GT.0 )
 | 
						|
     $         CALL ZHER( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
 | 
						|
     $                    AFAC( 1, K+1 ), LDAFAC-1 )
 | 
						|
*
 | 
						|
*           Scale column K by the diagonal element.
 | 
						|
*
 | 
						|
            AKK = DBLE( AFAC( 1, K ) )
 | 
						|
            CALL ZDSCAL( KLEN+1, AKK, AFAC( 1, K ), 1 )
 | 
						|
*
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the difference  L*L' - A  or  U'*U - A.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 60 J = 1, N
 | 
						|
            MU = MAX( 1, KD+2-J )
 | 
						|
            DO 50 I = MU, KD + 1
 | 
						|
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 80 J = 1, N
 | 
						|
            ML = MIN( KD+1, N-J+1 )
 | 
						|
            DO 70 I = 1, ML
 | 
						|
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | 
						|
   70       CONTINUE
 | 
						|
   80    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = ZLANHB( '1', UPLO, N, KD, AFAC, LDAFAC, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPBT01
 | 
						|
*
 | 
						|
      END
 |