972 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			972 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLASYF_RK + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rk.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rk.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rk.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
 | 
						|
*                             INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, KB, LDA, LDW, N, NB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> ZLASYF_RK computes a partial factorization of a complex symmetric
 | 
						|
*> matrix A using the bounded Bunch-Kaufman (rook) diagonal
 | 
						|
*> pivoting method. The partial factorization has the form:
 | 
						|
*>
 | 
						|
*> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
 | 
						|
*>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
 | 
						|
*>
 | 
						|
*> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
 | 
						|
*>       ( L21  I ) (  0  A22 ) (  0       I    )
 | 
						|
*>
 | 
						|
*> where the order of D is at most NB. The actual order is returned in
 | 
						|
*> the argument KB, and is either NB or NB-1, or N if N <= NB.
 | 
						|
*>
 | 
						|
*> ZLASYF_RK is an auxiliary routine called by ZSYTRF_RK. It uses
 | 
						|
*> blocked code (calling Level 3 BLAS) to update the submatrix
 | 
						|
*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The maximum number of columns of the matrix A that should be
 | 
						|
*>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
 | 
						|
*>          blocks.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] KB
 | 
						|
*> \verbatim
 | 
						|
*>          KB is INTEGER
 | 
						|
*>          The number of columns of A that were actually factored.
 | 
						|
*>          KB is either NB-1 or NB, or N if N <= NB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          On entry, the symmetric matrix A.
 | 
						|
*>            If UPLO = 'U': the leading N-by-N upper triangular part
 | 
						|
*>            of A contains the upper triangular part of the matrix A,
 | 
						|
*>            and the strictly lower triangular part of A is not
 | 
						|
*>            referenced.
 | 
						|
*>
 | 
						|
*>            If UPLO = 'L': the leading N-by-N lower triangular part
 | 
						|
*>            of A contains the lower triangular part of the matrix A,
 | 
						|
*>            and the strictly upper triangular part of A is not
 | 
						|
*>            referenced.
 | 
						|
*>
 | 
						|
*>          On exit, contains:
 | 
						|
*>            a) ONLY diagonal elements of the symmetric block diagonal
 | 
						|
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | 
						|
*>               (superdiagonal (or subdiagonal) elements of D
 | 
						|
*>                are stored on exit in array E), and
 | 
						|
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | 
						|
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX*16 array, dimension (N)
 | 
						|
*>          On exit, contains the superdiagonal (or subdiagonal)
 | 
						|
*>          elements of the symmetric block diagonal matrix D
 | 
						|
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | 
						|
*>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
 | 
						|
*>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
 | 
						|
*>
 | 
						|
*>          NOTE: For 1-by-1 diagonal block D(k), where
 | 
						|
*>          1 <= k <= N, the element E(k) is set to 0 in both
 | 
						|
*>          UPLO = 'U' or UPLO = 'L' cases.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          IPIV describes the permutation matrix P in the factorization
 | 
						|
*>          of matrix A as follows. The absolute value of IPIV(k)
 | 
						|
*>          represents the index of row and column that were
 | 
						|
*>          interchanged with the k-th row and column. The value of UPLO
 | 
						|
*>          describes the order in which the interchanges were applied.
 | 
						|
*>          Also, the sign of IPIV represents the block structure of
 | 
						|
*>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
 | 
						|
*>          diagonal blocks which correspond to 1 or 2 interchanges
 | 
						|
*>          at each factorization step.
 | 
						|
*>
 | 
						|
*>          If UPLO = 'U',
 | 
						|
*>          ( in factorization order, k decreases from N to 1 ):
 | 
						|
*>            a) A single positive entry IPIV(k) > 0 means:
 | 
						|
*>               D(k,k) is a 1-by-1 diagonal block.
 | 
						|
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
 | 
						|
*>               interchanged in the submatrix A(1:N,N-KB+1:N);
 | 
						|
*>               If IPIV(k) = k, no interchange occurred.
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>            b) A pair of consecutive negative entries
 | 
						|
*>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
 | 
						|
*>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
 | 
						|
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
 | 
						|
*>               1) If -IPIV(k) != k, rows and columns
 | 
						|
*>                  k and -IPIV(k) were interchanged
 | 
						|
*>                  in the matrix A(1:N,N-KB+1:N).
 | 
						|
*>                  If -IPIV(k) = k, no interchange occurred.
 | 
						|
*>               2) If -IPIV(k-1) != k-1, rows and columns
 | 
						|
*>                  k-1 and -IPIV(k-1) were interchanged
 | 
						|
*>                  in the submatrix A(1:N,N-KB+1:N).
 | 
						|
*>                  If -IPIV(k-1) = k-1, no interchange occurred.
 | 
						|
*>
 | 
						|
*>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
 | 
						|
*>
 | 
						|
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
 | 
						|
*>
 | 
						|
*>          If UPLO = 'L',
 | 
						|
*>          ( in factorization order, k increases from 1 to N ):
 | 
						|
*>            a) A single positive entry IPIV(k) > 0 means:
 | 
						|
*>               D(k,k) is a 1-by-1 diagonal block.
 | 
						|
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
 | 
						|
*>               interchanged in the submatrix A(1:N,1:KB).
 | 
						|
*>               If IPIV(k) = k, no interchange occurred.
 | 
						|
*>
 | 
						|
*>            b) A pair of consecutive negative entries
 | 
						|
*>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
 | 
						|
*>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | 
						|
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
 | 
						|
*>               1) If -IPIV(k) != k, rows and columns
 | 
						|
*>                  k and -IPIV(k) were interchanged
 | 
						|
*>                  in the submatrix A(1:N,1:KB).
 | 
						|
*>                  If -IPIV(k) = k, no interchange occurred.
 | 
						|
*>               2) If -IPIV(k+1) != k+1, rows and columns
 | 
						|
*>                  k-1 and -IPIV(k-1) were interchanged
 | 
						|
*>                  in the submatrix A(1:N,1:KB).
 | 
						|
*>                  If -IPIV(k+1) = k+1, no interchange occurred.
 | 
						|
*>
 | 
						|
*>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
 | 
						|
*>
 | 
						|
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is COMPLEX*16 array, dimension (LDW,NB)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDW
 | 
						|
*> \verbatim
 | 
						|
*>          LDW is INTEGER
 | 
						|
*>          The leading dimension of the array W.  LDW >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>
 | 
						|
*>          < 0: If INFO = -k, the k-th argument had an illegal value
 | 
						|
*>
 | 
						|
*>          > 0: If INFO = k, the matrix A is singular, because:
 | 
						|
*>                 If UPLO = 'U': column k in the upper
 | 
						|
*>                 triangular part of A contains all zeros.
 | 
						|
*>                 If UPLO = 'L': column k in the lower
 | 
						|
*>                 triangular part of A contains all zeros.
 | 
						|
*>
 | 
						|
*>               Therefore D(k,k) is exactly zero, and superdiagonal
 | 
						|
*>               elements of column k of U (or subdiagonal elements of
 | 
						|
*>               column k of L ) are all zeros. The factorization has
 | 
						|
*>               been completed, but the block diagonal matrix D is
 | 
						|
*>               exactly singular, and division by zero will occur if
 | 
						|
*>               it is used to solve a system of equations.
 | 
						|
*>
 | 
						|
*>               NOTE: INFO only stores the first occurrence of
 | 
						|
*>               a singularity, any subsequent occurrence of singularity
 | 
						|
*>               is not stored in INFO even though the factorization
 | 
						|
*>               always completes.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16SYcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  December 2016,  Igor Kozachenko,
 | 
						|
*>                  Computer Science Division,
 | 
						|
*>                  University of California, Berkeley
 | 
						|
*>
 | 
						|
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | 
						|
*>                  School of Mathematics,
 | 
						|
*>                  University of Manchester
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
 | 
						|
     $                      INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, KB, LDA, LDW, N, NB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      DOUBLE PRECISION   EIGHT, SEVTEN
 | 
						|
      PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
 | 
						|
      COMPLEX*16         CONE, CZERO
 | 
						|
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | 
						|
     $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            DONE
 | 
						|
      INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
 | 
						|
     $                   KP, KSTEP, P, II
 | 
						|
      DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, SFMIN, DTEMP
 | 
						|
      COMPLEX*16         D11, D12, D21, D22, R1, T, Z
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IZAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, IZAMAX, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Initialize ALPHA for use in choosing pivot block size.
 | 
						|
*
 | 
						|
      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | 
						|
*
 | 
						|
*     Compute machine safe minimum
 | 
						|
*
 | 
						|
      SFMIN = DLAMCH( 'S' )
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*        Factorize the trailing columns of A using the upper triangle
 | 
						|
*        of A and working backwards, and compute the matrix W = U12*D
 | 
						|
*        for use in updating A11
 | 
						|
*
 | 
						|
*        Initialize the first entry of array E, where superdiagonal
 | 
						|
*        elements of D are stored
 | 
						|
*
 | 
						|
         E( 1 ) = CZERO
 | 
						|
*
 | 
						|
*        K is the main loop index, decreasing from N in steps of 1 or 2
 | 
						|
*
 | 
						|
         K = N
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        KW is the column of W which corresponds to column K of A
 | 
						|
*
 | 
						|
         KW = NB + K - N
 | 
						|
*
 | 
						|
*        Exit from loop
 | 
						|
*
 | 
						|
         IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
 | 
						|
     $      GO TO 30
 | 
						|
*
 | 
						|
         KSTEP = 1
 | 
						|
         P = K
 | 
						|
*
 | 
						|
*        Copy column K of A to column KW of W and update it
 | 
						|
*
 | 
						|
         CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
 | 
						|
         IF( K.LT.N )
 | 
						|
     $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
 | 
						|
     $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
 | 
						|
*
 | 
						|
*        Determine rows and columns to be interchanged and whether
 | 
						|
*        a 1-by-1 or 2-by-2 pivot block will be used
 | 
						|
*
 | 
						|
         ABSAKK = CABS1( W( K, KW ) )
 | 
						|
*
 | 
						|
*        IMAX is the row-index of the largest off-diagonal element in
 | 
						|
*        column K, and COLMAX is its absolute value.
 | 
						|
*        Determine both COLMAX and IMAX.
 | 
						|
*
 | 
						|
         IF( K.GT.1 ) THEN
 | 
						|
            IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
 | 
						|
            COLMAX = CABS1( W( IMAX, KW ) )
 | 
						|
         ELSE
 | 
						|
            COLMAX = ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Column K is zero or underflow: set INFO and continue
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = K
 | 
						|
            KP = K
 | 
						|
            CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
 | 
						|
*
 | 
						|
*           Set E( K ) to zero
 | 
						|
*
 | 
						|
            IF( K.GT.1 )
 | 
						|
     $         E( K ) = CZERO
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
*           Test for interchange
 | 
						|
*
 | 
						|
*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | 
						|
*           (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | 
						|
*
 | 
						|
*              no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
               KP = K
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               DONE = .FALSE.
 | 
						|
*
 | 
						|
*              Loop until pivot found
 | 
						|
*
 | 
						|
   12          CONTINUE
 | 
						|
*
 | 
						|
*                 Begin pivot search loop body
 | 
						|
*
 | 
						|
*
 | 
						|
*                 Copy column IMAX to column KW-1 of W and update it
 | 
						|
*
 | 
						|
                  CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
 | 
						|
                  CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
 | 
						|
     $                        W( IMAX+1, KW-1 ), 1 )
 | 
						|
*
 | 
						|
                  IF( K.LT.N )
 | 
						|
     $               CALL ZGEMV( 'No transpose', K, N-K, -CONE,
 | 
						|
     $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
 | 
						|
     $                           CONE, W( 1, KW-1 ), 1 )
 | 
						|
*
 | 
						|
*                 JMAX is the column-index of the largest off-diagonal
 | 
						|
*                 element in row IMAX, and ROWMAX is its absolute value.
 | 
						|
*                 Determine both ROWMAX and JMAX.
 | 
						|
*
 | 
						|
                  IF( IMAX.NE.K ) THEN
 | 
						|
                     JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
 | 
						|
     $                                     1 )
 | 
						|
                     ROWMAX = CABS1( W( JMAX, KW-1 ) )
 | 
						|
                  ELSE
 | 
						|
                     ROWMAX = ZERO
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( IMAX.GT.1 ) THEN
 | 
						|
                     ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
 | 
						|
                     DTEMP = CABS1( W( ITEMP, KW-1 ) )
 | 
						|
                     IF( DTEMP.GT.ROWMAX ) THEN
 | 
						|
                        ROWMAX = DTEMP
 | 
						|
                        JMAX = ITEMP
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Equivalent to testing for
 | 
						|
*                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
 | 
						|
     $            THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K and IMAX,
 | 
						|
*                    use 1-by-1 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
*
 | 
						|
*                    copy column KW-1 of W to column KW of W
 | 
						|
*
 | 
						|
                     CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
 | 
						|
*
 | 
						|
                     DONE = .TRUE.
 | 
						|
*
 | 
						|
*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | 
						|
     $            THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K-1 and IMAX,
 | 
						|
*                    use 2-by-2 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
                     KSTEP = 2
 | 
						|
                     DONE = .TRUE.
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Pivot not found: set params and repeat
 | 
						|
*
 | 
						|
                     P = IMAX
 | 
						|
                     COLMAX = ROWMAX
 | 
						|
                     IMAX = JMAX
 | 
						|
*
 | 
						|
*                    Copy updated JMAXth (next IMAXth) column to Kth of W
 | 
						|
*
 | 
						|
                     CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
 | 
						|
*
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 End pivot search loop body
 | 
						|
*
 | 
						|
               IF( .NOT. DONE ) GOTO 12
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
            KK = K - KSTEP + 1
 | 
						|
*
 | 
						|
*           KKW is the column of W which corresponds to column KK of A
 | 
						|
*
 | 
						|
            KKW = NB + KK - N
 | 
						|
*
 | 
						|
            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | 
						|
*
 | 
						|
*              Copy non-updated column K to column P
 | 
						|
*
 | 
						|
               CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
 | 
						|
               CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
 | 
						|
*
 | 
						|
*              Interchange rows K and P in last N-K+1 columns of A
 | 
						|
*              and last N-K+2 columns of W
 | 
						|
*
 | 
						|
               CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
 | 
						|
               CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Updated column KP is already stored in column KKW of W
 | 
						|
*
 | 
						|
            IF( KP.NE.KK ) THEN
 | 
						|
*
 | 
						|
*              Copy non-updated column KK to column KP
 | 
						|
*
 | 
						|
               A( KP, K ) = A( KK, K )
 | 
						|
               CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
 | 
						|
     $                     LDA )
 | 
						|
               CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
 | 
						|
*
 | 
						|
*              Interchange rows KK and KP in last N-KK+1 columns
 | 
						|
*              of A and W
 | 
						|
*
 | 
						|
               CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
 | 
						|
               CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
 | 
						|
     $                     LDW )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              1-by-1 pivot block D(k): column KW of W now holds
 | 
						|
*
 | 
						|
*              W(k) = U(k)*D(k)
 | 
						|
*
 | 
						|
*              where U(k) is the k-th column of U
 | 
						|
*
 | 
						|
*              Store U(k) in column k of A
 | 
						|
*
 | 
						|
               CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
 | 
						|
               IF( K.GT.1 ) THEN
 | 
						|
                  IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
 | 
						|
                     R1 = CONE / A( K, K )
 | 
						|
                     CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
 | 
						|
                  ELSE IF( A( K, K ).NE.CZERO ) THEN
 | 
						|
                     DO 14 II = 1, K - 1
 | 
						|
                        A( II, K ) = A( II, K ) / A( K, K )
 | 
						|
   14                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Store the superdiagonal element of D in array E
 | 
						|
*
 | 
						|
                  E( K ) = CZERO
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2-by-2 pivot block D(k): columns KW and KW-1 of W now
 | 
						|
*              hold
 | 
						|
*
 | 
						|
*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | 
						|
*
 | 
						|
*              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | 
						|
*              of U
 | 
						|
*
 | 
						|
               IF( K.GT.2 ) THEN
 | 
						|
*
 | 
						|
*                 Store U(k) and U(k-1) in columns k and k-1 of A
 | 
						|
*
 | 
						|
                  D12 = W( K-1, KW )
 | 
						|
                  D11 = W( K, KW ) / D12
 | 
						|
                  D22 = W( K-1, KW-1 ) / D12
 | 
						|
                  T = CONE / ( D11*D22-CONE )
 | 
						|
                  DO 20 J = 1, K - 2
 | 
						|
                     A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
 | 
						|
     $                             D12 )
 | 
						|
                     A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
 | 
						|
     $                           D12 )
 | 
						|
   20             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Copy diagonal elements of D(K) to A,
 | 
						|
*              copy superdiagonal element of D(K) to E(K) and
 | 
						|
*              ZERO out superdiagonal entry of A
 | 
						|
*
 | 
						|
               A( K-1, K-1 ) = W( K-1, KW-1 )
 | 
						|
               A( K-1, K ) = CZERO
 | 
						|
               A( K, K ) = W( K, KW )
 | 
						|
               E( K ) = W( K-1, KW )
 | 
						|
               E( K-1 ) = CZERO
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           End column K is nonsingular
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Store details of the interchanges in IPIV
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
            IPIV( K ) = KP
 | 
						|
         ELSE
 | 
						|
            IPIV( K ) = -P
 | 
						|
            IPIV( K-1 ) = -KP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Decrease K and return to the start of the main loop
 | 
						|
*
 | 
						|
         K = K - KSTEP
 | 
						|
         GO TO 10
 | 
						|
*
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Update the upper triangle of A11 (= A(1:k,1:k)) as
 | 
						|
*
 | 
						|
*        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
 | 
						|
*
 | 
						|
*        computing blocks of NB columns at a time
 | 
						|
*
 | 
						|
         DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
 | 
						|
            JB = MIN( NB, K-J+1 )
 | 
						|
*
 | 
						|
*           Update the upper triangle of the diagonal block
 | 
						|
*
 | 
						|
            DO 40 JJ = J, J + JB - 1
 | 
						|
               CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
 | 
						|
     $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
 | 
						|
     $                     A( J, JJ ), 1 )
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
*           Update the rectangular superdiagonal block
 | 
						|
*
 | 
						|
            IF( J.GE.2 )
 | 
						|
     $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
 | 
						|
     $                     N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
 | 
						|
     $                     LDW, CONE, A( 1, J ), LDA )
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*        Set KB to the number of columns factorized
 | 
						|
*
 | 
						|
         KB = N - K
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Factorize the leading columns of A using the lower triangle
 | 
						|
*        of A and working forwards, and compute the matrix W = L21*D
 | 
						|
*        for use in updating A22
 | 
						|
*
 | 
						|
*        Initialize the unused last entry of the subdiagonal array E.
 | 
						|
*
 | 
						|
         E( N ) = CZERO
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 in steps of 1 or 2
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
   70   CONTINUE
 | 
						|
*
 | 
						|
*        Exit from loop
 | 
						|
*
 | 
						|
         IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
 | 
						|
     $      GO TO 90
 | 
						|
*
 | 
						|
         KSTEP = 1
 | 
						|
         P = K
 | 
						|
*
 | 
						|
*        Copy column K of A to column K of W and update it
 | 
						|
*
 | 
						|
         CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
 | 
						|
         IF( K.GT.1 )
 | 
						|
     $      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
 | 
						|
     $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
 | 
						|
*
 | 
						|
*        Determine rows and columns to be interchanged and whether
 | 
						|
*        a 1-by-1 or 2-by-2 pivot block will be used
 | 
						|
*
 | 
						|
         ABSAKK = CABS1( W( K, K ) )
 | 
						|
*
 | 
						|
*        IMAX is the row-index of the largest off-diagonal element in
 | 
						|
*        column K, and COLMAX is its absolute value.
 | 
						|
*        Determine both COLMAX and IMAX.
 | 
						|
*
 | 
						|
         IF( K.LT.N ) THEN
 | 
						|
            IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
 | 
						|
            COLMAX = CABS1( W( IMAX, K ) )
 | 
						|
         ELSE
 | 
						|
            COLMAX = ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Column K is zero or underflow: set INFO and continue
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = K
 | 
						|
            KP = K
 | 
						|
            CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
 | 
						|
*
 | 
						|
*           Set E( K ) to zero
 | 
						|
*
 | 
						|
            IF( K.LT.N )
 | 
						|
     $         E( K ) = CZERO
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
*           Test for interchange
 | 
						|
*
 | 
						|
*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | 
						|
*           (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | 
						|
*
 | 
						|
*              no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
               KP = K
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               DONE = .FALSE.
 | 
						|
*
 | 
						|
*              Loop until pivot found
 | 
						|
*
 | 
						|
   72          CONTINUE
 | 
						|
*
 | 
						|
*                 Begin pivot search loop body
 | 
						|
*
 | 
						|
*
 | 
						|
*                 Copy column IMAX to column K+1 of W and update it
 | 
						|
*
 | 
						|
                  CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
 | 
						|
                  CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
 | 
						|
     $                        W( IMAX, K+1 ), 1 )
 | 
						|
                  IF( K.GT.1 )
 | 
						|
     $               CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
 | 
						|
     $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
 | 
						|
     $                           CONE, W( K, K+1 ), 1 )
 | 
						|
*
 | 
						|
*                 JMAX is the column-index of the largest off-diagonal
 | 
						|
*                 element in row IMAX, and ROWMAX is its absolute value.
 | 
						|
*                 Determine both ROWMAX and JMAX.
 | 
						|
*
 | 
						|
                  IF( IMAX.NE.K ) THEN
 | 
						|
                     JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
 | 
						|
                     ROWMAX = CABS1( W( JMAX, K+1 ) )
 | 
						|
                  ELSE
 | 
						|
                     ROWMAX = ZERO
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( IMAX.LT.N ) THEN
 | 
						|
                     ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
 | 
						|
                     DTEMP = CABS1( W( ITEMP, K+1 ) )
 | 
						|
                     IF( DTEMP.GT.ROWMAX ) THEN
 | 
						|
                        ROWMAX = DTEMP
 | 
						|
                        JMAX = ITEMP
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Equivalent to testing for
 | 
						|
*                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
 | 
						|
     $            THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K and IMAX,
 | 
						|
*                    use 1-by-1 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
*
 | 
						|
*                    copy column K+1 of W to column K of W
 | 
						|
*
 | 
						|
                     CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
 | 
						|
*
 | 
						|
                     DONE = .TRUE.
 | 
						|
*
 | 
						|
*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | 
						|
     $            THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K+1 and IMAX,
 | 
						|
*                    use 2-by-2 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
                     KSTEP = 2
 | 
						|
                     DONE = .TRUE.
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Pivot not found: set params and repeat
 | 
						|
*
 | 
						|
                     P = IMAX
 | 
						|
                     COLMAX = ROWMAX
 | 
						|
                     IMAX = JMAX
 | 
						|
*
 | 
						|
*                    Copy updated JMAXth (next IMAXth) column to Kth of W
 | 
						|
*
 | 
						|
                     CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
 | 
						|
*
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 End pivot search loop body
 | 
						|
*
 | 
						|
               IF( .NOT. DONE ) GOTO 72
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
            KK = K + KSTEP - 1
 | 
						|
*
 | 
						|
            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | 
						|
*
 | 
						|
*              Copy non-updated column K to column P
 | 
						|
*
 | 
						|
               CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
 | 
						|
               CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
 | 
						|
*
 | 
						|
*              Interchange rows K and P in first K columns of A
 | 
						|
*              and first K+1 columns of W
 | 
						|
*
 | 
						|
               CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
 | 
						|
               CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Updated column KP is already stored in column KK of W
 | 
						|
*
 | 
						|
            IF( KP.NE.KK ) THEN
 | 
						|
*
 | 
						|
*              Copy non-updated column KK to column KP
 | 
						|
*
 | 
						|
               A( KP, K ) = A( KK, K )
 | 
						|
               CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
 | 
						|
               CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
 | 
						|
*
 | 
						|
*              Interchange rows KK and KP in first KK columns of A and W
 | 
						|
*
 | 
						|
               CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
 | 
						|
               CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              1-by-1 pivot block D(k): column k of W now holds
 | 
						|
*
 | 
						|
*              W(k) = L(k)*D(k)
 | 
						|
*
 | 
						|
*              where L(k) is the k-th column of L
 | 
						|
*
 | 
						|
*              Store L(k) in column k of A
 | 
						|
*
 | 
						|
               CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
                  IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
 | 
						|
                     R1 = CONE / A( K, K )
 | 
						|
                     CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
 | 
						|
                  ELSE IF( A( K, K ).NE.CZERO ) THEN
 | 
						|
                     DO 74 II = K + 1, N
 | 
						|
                        A( II, K ) = A( II, K ) / A( K, K )
 | 
						|
   74                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Store the subdiagonal element of D in array E
 | 
						|
*
 | 
						|
                  E( K ) = CZERO
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2-by-2 pivot block D(k): columns k and k+1 of W now hold
 | 
						|
*
 | 
						|
*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | 
						|
*
 | 
						|
*              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | 
						|
*              of L
 | 
						|
*
 | 
						|
               IF( K.LT.N-1 ) THEN
 | 
						|
*
 | 
						|
*                 Store L(k) and L(k+1) in columns k and k+1 of A
 | 
						|
*
 | 
						|
                  D21 = W( K+1, K )
 | 
						|
                  D11 = W( K+1, K+1 ) / D21
 | 
						|
                  D22 = W( K, K ) / D21
 | 
						|
                  T = CONE / ( D11*D22-CONE )
 | 
						|
                  DO 80 J = K + 2, N
 | 
						|
                     A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
 | 
						|
     $                           D21 )
 | 
						|
                     A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
 | 
						|
     $                             D21 )
 | 
						|
   80             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Copy diagonal elements of D(K) to A,
 | 
						|
*              copy subdiagonal element of D(K) to E(K) and
 | 
						|
*              ZERO out subdiagonal entry of A
 | 
						|
*
 | 
						|
               A( K, K ) = W( K, K )
 | 
						|
               A( K+1, K ) = CZERO
 | 
						|
               A( K+1, K+1 ) = W( K+1, K+1 )
 | 
						|
               E( K ) = W( K+1, K )
 | 
						|
               E( K+1 ) = CZERO
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           End column K is nonsingular
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Store details of the interchanges in IPIV
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
            IPIV( K ) = KP
 | 
						|
         ELSE
 | 
						|
            IPIV( K ) = -P
 | 
						|
            IPIV( K+1 ) = -KP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Increase K and return to the start of the main loop
 | 
						|
*
 | 
						|
         K = K + KSTEP
 | 
						|
         GO TO 70
 | 
						|
*
 | 
						|
   90    CONTINUE
 | 
						|
*
 | 
						|
*        Update the lower triangle of A22 (= A(k:n,k:n)) as
 | 
						|
*
 | 
						|
*        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
 | 
						|
*
 | 
						|
*        computing blocks of NB columns at a time
 | 
						|
*
 | 
						|
         DO 110 J = K, N, NB
 | 
						|
            JB = MIN( NB, N-J+1 )
 | 
						|
*
 | 
						|
*           Update the lower triangle of the diagonal block
 | 
						|
*
 | 
						|
            DO 100 JJ = J, J + JB - 1
 | 
						|
               CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
 | 
						|
     $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
 | 
						|
     $                     A( JJ, JJ ), 1 )
 | 
						|
  100       CONTINUE
 | 
						|
*
 | 
						|
*           Update the rectangular subdiagonal block
 | 
						|
*
 | 
						|
            IF( J+JB.LE.N )
 | 
						|
     $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 | 
						|
     $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
 | 
						|
     $                     LDW, CONE, A( J+JB, J ), LDA )
 | 
						|
  110    CONTINUE
 | 
						|
*
 | 
						|
*        Set KB to the number of columns factorized
 | 
						|
*
 | 
						|
         KB = K - 1
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLASYF_RK
 | 
						|
*
 | 
						|
      END
 |