1297 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1297 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle_() continue;
 | 
						|
#define myceiling_(w) {ceil(w)}
 | 
						|
#define myhuge_(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* Subroutine */ int sgedmdq_(char *jobs, char *jobz, char *jobr, char *jobq, 
 | 
						|
	char *jobt, char *jobf, integer *whtsvd, integer *m, integer *n, real 
 | 
						|
	*f, integer *ldf, real *x, integer *ldx, real *y, integer *ldy, 
 | 
						|
	integer *nrnk, real *tol, integer *k, real *reig, real *imeig, real *
 | 
						|
	z__, integer *ldz, real *res, real *b, integer *ldb, real *v, integer 
 | 
						|
	*ldv, real *s, integer *lds, real *work, integer *lwork, integer *
 | 
						|
	iwork, integer *liwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer f_dim1, f_offset, x_dim1, x_offset, y_dim1, y_offset, z_dim1, 
 | 
						|
	    z_offset, b_dim1, b_offset, v_dim1, v_offset, s_dim1, s_offset, 
 | 
						|
	    i__1, i__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real zero;
 | 
						|
    integer info1;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    char jobvl[1];
 | 
						|
    integer minmn;
 | 
						|
    logical wantq;
 | 
						|
    integer mlwqr, olwqr;
 | 
						|
    logical wntex;
 | 
						|
    extern /* Subroutine */ int sgedmd_(char *, char *, char *, char *, 
 | 
						|
	    integer *, integer *, integer *, real *, integer *, real *, 
 | 
						|
	    integer *, integer *, real *, integer *, real *, real *, real *, 
 | 
						|
	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *, integer *, integer *, integer *), xerbla_(char *, integer *);
 | 
						|
    integer mlwdmd, olwdmd;
 | 
						|
    extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer 
 | 
						|
	    *, real *, real *, integer *, integer *);
 | 
						|
    logical sccolx, sccoly;
 | 
						|
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *), slaset_(char *, integer *, 
 | 
						|
	    integer *, real *, real *, real *, integer *);
 | 
						|
    integer iminwr;
 | 
						|
    logical wntvec, wntvcf;
 | 
						|
    integer mlwgqr;
 | 
						|
    logical wntref;
 | 
						|
    integer mlwork, olwgqr, olwork;
 | 
						|
    real rdummy[2];
 | 
						|
    integer mlwmqr, olwmqr;
 | 
						|
    logical lquery, wntres, wnttrf, wntvcq;
 | 
						|
    extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real 
 | 
						|
	    *, integer *, real *, real *, integer *, integer *), sormqr_(char 
 | 
						|
	    *, char *, integer *, integer *, integer *, real *, integer *, 
 | 
						|
	    real *, real *, integer *, real *, integer *, integer *);
 | 
						|
    real one;
 | 
						|
 | 
						|
/* March 2023 */
 | 
						|
/* ..... */
 | 
						|
/*      USE                   iso_fortran_env */
 | 
						|
/*      INTEGER, PARAMETER :: WP = real32 */
 | 
						|
/* ..... */
 | 
						|
/*     Scalar arguments */
 | 
						|
/*     Array arguments */
 | 
						|
/* ..... */
 | 
						|
/*     Purpose */
 | 
						|
/*     ======= */
 | 
						|
/*     SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for */
 | 
						|
/*     a pair of data snapshot matrices, using a QR factorization */
 | 
						|
/*     based compression of the data. For the input matrices */
 | 
						|
/*     X and Y such that Y = A*X with an unaccessible matrix */
 | 
						|
/*     A, SGEDMDQ computes a certain number of Ritz pairs of A using */
 | 
						|
/*     the standard Rayleigh-Ritz extraction from a subspace of */
 | 
						|
/*     range(X) that is determined using the leading left singular */
 | 
						|
/*     vectors of X. Optionally, SGEDMDQ returns the residuals */
 | 
						|
/*     of the computed Ritz pairs, the information needed for */
 | 
						|
/*     a refinement of the Ritz vectors, or the eigenvectors of */
 | 
						|
/*     the Exact DMD. */
 | 
						|
/*     For further details see the references listed */
 | 
						|
/*     below. For more details of the implementation see [3]. */
 | 
						|
 | 
						|
/*     References */
 | 
						|
/*     ========== */
 | 
						|
/*     [1] P. Schmid: Dynamic mode decomposition of numerical */
 | 
						|
/*         and experimental data, */
 | 
						|
/*         Journal of Fluid Mechanics 656, 5-28, 2010. */
 | 
						|
/*     [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal */
 | 
						|
/*         decompositions: analysis and enhancements, */
 | 
						|
/*         SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. */
 | 
						|
/*     [3] Z. Drmac: A LAPACK implementation of the Dynamic */
 | 
						|
/*         Mode Decomposition I. Technical report. AIMDyn Inc. */
 | 
						|
/*         and LAPACK Working Note 298. */
 | 
						|
/*     [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. */
 | 
						|
/*         Brunton, N. Kutz: On Dynamic Mode Decomposition: */
 | 
						|
/*         Theory and Applications, Journal of Computational */
 | 
						|
/*         Dynamics 1(2), 391 -421, 2014. */
 | 
						|
 | 
						|
/*     Developed and supported by: */
 | 
						|
/*     =========================== */
 | 
						|
/*     Developed and coded by Zlatko Drmac, Faculty of Science, */
 | 
						|
/*     University of Zagreb;  drmac@math.hr */
 | 
						|
/*     In cooperation with */
 | 
						|
/*     AIMdyn Inc., Santa Barbara, CA. */
 | 
						|
/*     and supported by */
 | 
						|
/*     - DARPA SBIR project "Koopman Operator-Based Forecasting */
 | 
						|
/*     for Nonstationary Processes from Near-Term, Limited */
 | 
						|
/*     Observational Data" Contract No: W31P4Q-21-C-0007 */
 | 
						|
/*     - DARPA PAI project "Physics-Informed Machine Learning */
 | 
						|
/*     Methodologies" Contract No: HR0011-18-9-0033 */
 | 
						|
/*     - DARPA MoDyL project "A Data-Driven, Operator-Theoretic */
 | 
						|
/*     Framework for Space-Time Analysis of Process Dynamics" */
 | 
						|
/*     Contract No: HR0011-16-C-0116 */
 | 
						|
/*     Any opinions, findings and conclusions or recommendations */
 | 
						|
/*     expressed in this material are those of the author and */
 | 
						|
/*     do not necessarily reflect the views of the DARPA SBIR */
 | 
						|
/*     Program Office. */
 | 
						|
/* ============================================================ */
 | 
						|
/*     Distribution Statement A: */
 | 
						|
/*     Approved for Public Release, Distribution Unlimited. */
 | 
						|
/*     Cleared by DARPA on September 29, 2022 */
 | 
						|
/* ============================================================ */
 | 
						|
/* ...................................................................... */
 | 
						|
/*     Arguments */
 | 
						|
/*     ========= */
 | 
						|
/*     JOBS (input) CHARACTER*1 */
 | 
						|
/*     Determines whether the initial data snapshots are scaled */
 | 
						|
/*     by a diagonal matrix. The data snapshots are the columns */
 | 
						|
/*     of F. The leading N-1 columns of F are denoted X and the */
 | 
						|
/*     trailing N-1 columns are denoted Y. */
 | 
						|
/*     'S' :: The data snapshots matrices X and Y are multiplied */
 | 
						|
/*            with a diagonal matrix D so that X*D has unit */
 | 
						|
/*            nonzero columns (in the Euclidean 2-norm) */
 | 
						|
/*     'C' :: The snapshots are scaled as with the 'S' option. */
 | 
						|
/*            If it is found that an i-th column of X is zero */
 | 
						|
/*            vector and the corresponding i-th column of Y is */
 | 
						|
/*            non-zero, then the i-th column of Y is set to */
 | 
						|
/*            zero and a warning flag is raised. */
 | 
						|
/*     'Y' :: The data snapshots matrices X and Y are multiplied */
 | 
						|
/*            by a diagonal matrix D so that Y*D has unit */
 | 
						|
/*            nonzero columns (in the Euclidean 2-norm) */
 | 
						|
/*     'N' :: No data scaling. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBZ (input) CHARACTER*1 */
 | 
						|
/*     Determines whether the eigenvectors (Koopman modes) will */
 | 
						|
/*     be computed. */
 | 
						|
/*     'V' :: The eigenvectors (Koopman modes) will be computed */
 | 
						|
/*            and returned in the matrix Z. */
 | 
						|
/*            See the description of Z. */
 | 
						|
/*     'F' :: The eigenvectors (Koopman modes) will be returned */
 | 
						|
/*            in factored form as the product Z*V, where Z */
 | 
						|
/*            is orthonormal and V contains the eigenvectors */
 | 
						|
/*            of the corresponding Rayleigh quotient. */
 | 
						|
/*            See the descriptions of F, V, Z. */
 | 
						|
/*     'Q' :: The eigenvectors (Koopman modes) will be returned */
 | 
						|
/*            in factored form as the product Q*Z, where Z */
 | 
						|
/*            contains the eigenvectors of the compression of the */
 | 
						|
/*            underlying discretized operator onto the span of */
 | 
						|
/*            the data snapshots. See the descriptions of F, V, Z. */
 | 
						|
/*            Q is from the initial QR factorization. */
 | 
						|
/*     'N' :: The eigenvectors are not computed. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBR (input) CHARACTER*1 */
 | 
						|
/*     Determines whether to compute the residuals. */
 | 
						|
/*     'R' :: The residuals for the computed eigenpairs will */
 | 
						|
/*            be computed and stored in the array RES. */
 | 
						|
/*            See the description of RES. */
 | 
						|
/*            For this option to be legal, JOBZ must be 'V'. */
 | 
						|
/*     'N' :: The residuals are not computed. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBQ (input) CHARACTER*1 */
 | 
						|
/*     Specifies whether to explicitly compute and return the */
 | 
						|
/*     orthogonal matrix from the QR factorization. */
 | 
						|
/*     'Q' :: The matrix Q of the QR factorization of the data */
 | 
						|
/*            snapshot matrix is computed and stored in the */
 | 
						|
/*            array F. See the description of F. */
 | 
						|
/*     'N' :: The matrix Q is not explicitly computed. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBT (input) CHARACTER*1 */
 | 
						|
/*     Specifies whether to return the upper triangular factor */
 | 
						|
/*     from the QR factorization. */
 | 
						|
/*     'R' :: The matrix R of the QR factorization of the data */
 | 
						|
/*            snapshot matrix F is returned in the array Y. */
 | 
						|
/*            See the description of Y and Further details. */
 | 
						|
/*     'N' :: The matrix R is not returned. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBF (input) CHARACTER*1 */
 | 
						|
/*     Specifies whether to store information needed for post- */
 | 
						|
/*     processing (e.g. computing refined Ritz vectors) */
 | 
						|
/*     'R' :: The matrix needed for the refinement of the Ritz */
 | 
						|
/*            vectors is computed and stored in the array B. */
 | 
						|
/*            See the description of B. */
 | 
						|
/*     'E' :: The unscaled eigenvectors of the Exact DMD are */
 | 
						|
/*            computed and returned in the array B. See the */
 | 
						|
/*            description of B. */
 | 
						|
/*     'N' :: No eigenvector refinement data is computed. */
 | 
						|
/*     To be useful on exit, this option needs JOBQ='Q'. */
 | 
						|
/* ..... */
 | 
						|
/*     WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } */
 | 
						|
/*     Allows for a selection of the SVD algorithm from the */
 | 
						|
/*     LAPACK library. */
 | 
						|
/*     1 :: SGESVD (the QR SVD algorithm) */
 | 
						|
/*     2 :: SGESDD (the Divide and Conquer algorithm; if enough */
 | 
						|
/*          workspace available, this is the fastest option) */
 | 
						|
/*     3 :: SGESVDQ (the preconditioned QR SVD  ; this and 4 */
 | 
						|
/*          are the most accurate options) */
 | 
						|
/*     4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3 */
 | 
						|
/*          are the most accurate options) */
 | 
						|
/*     For the four methods above, a significant difference in */
 | 
						|
/*     the accuracy of small singular values is possible if */
 | 
						|
/*     the snapshots vary in norm so that X is severely */
 | 
						|
/*     ill-conditioned. If small (smaller than EPS*||X||) */
 | 
						|
/*     singular values are of interest and JOBS=='N',  then */
 | 
						|
/*     the options (3, 4) give the most accurate results, where */
 | 
						|
/*     the option 4 is slightly better and with stronger */
 | 
						|
/*     theoretical background. */
 | 
						|
/*     If JOBS=='S', i.e. the columns of X will be normalized, */
 | 
						|
/*     then all methods give nearly equally accurate results. */
 | 
						|
/* ..... */
 | 
						|
/*     M (input) INTEGER, M >= 0 */
 | 
						|
/*     The state space dimension (the number of rows of F) */
 | 
						|
/* ..... */
 | 
						|
/*     N (input) INTEGER, 0 <= N <= M */
 | 
						|
/*     The number of data snapshots from a single trajectory, */
 | 
						|
/*     taken at equidistant discrete times. This is the */
 | 
						|
/*     number of columns of F. */
 | 
						|
/* ..... */
 | 
						|
/*     F (input/output) REAL(KIND=WP) M-by-N array */
 | 
						|
/*     > On entry, */
 | 
						|
/*     the columns of F are the sequence of data snapshots */
 | 
						|
/*     from a single trajectory, taken at equidistant discrete */
 | 
						|
/*     times. It is assumed that the column norms of F are */
 | 
						|
/*     in the range of the normalized floating point numbers. */
 | 
						|
/*     < On exit, */
 | 
						|
/*     If JOBQ == 'Q', the array F contains the orthogonal */
 | 
						|
/*     matrix/factor of the QR factorization of the initial */
 | 
						|
/*     data snapshots matrix F. See the description of JOBQ. */
 | 
						|
/*     If JOBQ == 'N', the entries in F strictly below the main */
 | 
						|
/*     diagonal contain, column-wise, the information on the */
 | 
						|
/*     Householder vectors, as returned by SGEQRF. The */
 | 
						|
/*     remaining information to restore the orthogonal matrix */
 | 
						|
/*     of the initial QR factorization is stored in WORK(1:N). */
 | 
						|
/*     See the description of WORK. */
 | 
						|
/* ..... */
 | 
						|
/*     LDF (input) INTEGER, LDF >= M */
 | 
						|
/*     The leading dimension of the array F. */
 | 
						|
/* ..... */
 | 
						|
/*     X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array */
 | 
						|
/*     X is used as workspace to hold representations of the */
 | 
						|
/*     leading N-1 snapshots in the orthonormal basis computed */
 | 
						|
/*     in the QR factorization of F. */
 | 
						|
/*     On exit, the leading K columns of X contain the leading */
 | 
						|
/*     K left singular vectors of the above described content */
 | 
						|
/*     of X. To lift them to the space of the left singular */
 | 
						|
/*     vectors U(:,1:K)of the input data, pre-multiply with the */
 | 
						|
/*     Q factor from the initial QR factorization. */
 | 
						|
/*     See the descriptions of F, K, V  and Z. */
 | 
						|
/* ..... */
 | 
						|
/*     LDX (input) INTEGER, LDX >= N */
 | 
						|
/*     The leading dimension of the array X */
 | 
						|
/* ..... */
 | 
						|
/*     Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array */
 | 
						|
/*     Y is used as workspace to hold representations of the */
 | 
						|
/*     trailing N-1 snapshots in the orthonormal basis computed */
 | 
						|
/*     in the QR factorization of F. */
 | 
						|
/*     On exit, */
 | 
						|
/*     If JOBT == 'R', Y contains the MIN(M,N)-by-N upper */
 | 
						|
/*     triangular factor from the QR factorization of the data */
 | 
						|
/*     snapshot matrix F. */
 | 
						|
/* ..... */
 | 
						|
/*     LDY (input) INTEGER , LDY >= N */
 | 
						|
/*     The leading dimension of the array Y */
 | 
						|
/* ..... */
 | 
						|
/*     NRNK (input) INTEGER */
 | 
						|
/*     Determines the mode how to compute the numerical rank, */
 | 
						|
/*     i.e. how to truncate small singular values of the input */
 | 
						|
/*     matrix X. On input, if */
 | 
						|
/*     NRNK = -1 :: i-th singular value sigma(i) is truncated */
 | 
						|
/*                  if sigma(i) <= TOL*sigma(1) */
 | 
						|
/*                  This option is recommended. */
 | 
						|
/*     NRNK = -2 :: i-th singular value sigma(i) is truncated */
 | 
						|
/*                  if sigma(i) <= TOL*sigma(i-1) */
 | 
						|
/*                  This option is included for R&D purposes. */
 | 
						|
/*                  It requires highly accurate SVD, which */
 | 
						|
/*                  may not be feasible. */
 | 
						|
/*     The numerical rank can be enforced by using positive */
 | 
						|
/*     value of NRNK as follows: */
 | 
						|
/*     0 < NRNK <= N-1 :: at most NRNK largest singular values */
 | 
						|
/*     will be used. If the number of the computed nonzero */
 | 
						|
/*     singular values is less than NRNK, then only those */
 | 
						|
/*     nonzero values will be used and the actually used */
 | 
						|
/*     dimension is less than NRNK. The actual number of */
 | 
						|
/*     the nonzero singular values is returned in the variable */
 | 
						|
/*     K. See the description of K. */
 | 
						|
/* ..... */
 | 
						|
/*     TOL (input) REAL(KIND=WP), 0 <= TOL < 1 */
 | 
						|
/*     The tolerance for truncating small singular values. */
 | 
						|
/*     See the description of NRNK. */
 | 
						|
/* ..... */
 | 
						|
/*     K (output) INTEGER,  0 <= K <= N */
 | 
						|
/*     The dimension of the SVD/POD basis for the leading N-1 */
 | 
						|
/*     data snapshots (columns of F) and the number of the */
 | 
						|
/*     computed Ritz pairs. The value of K is determined */
 | 
						|
/*     according to the rule set by the parameters NRNK and */
 | 
						|
/*     TOL. See the descriptions of NRNK and TOL. */
 | 
						|
/* ..... */
 | 
						|
/*     REIG (output) REAL(KIND=WP) (N-1)-by-1 array */
 | 
						|
/*     The leading K (K<=N) entries of REIG contain */
 | 
						|
/*     the real parts of the computed eigenvalues */
 | 
						|
/*     REIG(1:K) + sqrt(-1)*IMEIG(1:K). */
 | 
						|
/*     See the descriptions of K, IMEIG, Z. */
 | 
						|
/* ..... */
 | 
						|
/*     IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array */
 | 
						|
/*     The leading K (K<N) entries of REIG contain */
 | 
						|
/*     the imaginary parts of the computed eigenvalues */
 | 
						|
/*     REIG(1:K) + sqrt(-1)*IMEIG(1:K). */
 | 
						|
/*     The eigenvalues are determined as follows: */
 | 
						|
/*     If IMEIG(i) == 0, then the corresponding eigenvalue is */
 | 
						|
/*     real, LAMBDA(i) = REIG(i). */
 | 
						|
/*     If IMEIG(i)>0, then the corresponding complex */
 | 
						|
/*     conjugate pair of eigenvalues reads */
 | 
						|
/*     LAMBDA(i)   = REIG(i) + sqrt(-1)*IMAG(i) */
 | 
						|
/*     LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) */
 | 
						|
/*     That is, complex conjugate pairs have consecutive */
 | 
						|
/*     indices (i,i+1), with the positive imaginary part */
 | 
						|
/*     listed first. */
 | 
						|
/*     See the descriptions of K, REIG, Z. */
 | 
						|
/* ..... */
 | 
						|
/*     Z (workspace/output) REAL(KIND=WP)  M-by-(N-1) array */
 | 
						|
/*     If JOBZ =='V' then */
 | 
						|
/*        Z contains real Ritz vectors as follows: */
 | 
						|
/*        If IMEIG(i)=0, then Z(:,i) is an eigenvector of */
 | 
						|
/*        the i-th Ritz value. */
 | 
						|
/*        If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then */
 | 
						|
/*        [Z(:,i) Z(:,i+1)] span an invariant subspace and */
 | 
						|
/*        the Ritz values extracted from this subspace are */
 | 
						|
/*        REIG(i) + sqrt(-1)*IMEIG(i) and */
 | 
						|
/*        REIG(i) - sqrt(-1)*IMEIG(i). */
 | 
						|
/*        The corresponding eigenvectors are */
 | 
						|
/*        Z(:,i) + sqrt(-1)*Z(:,i+1) and */
 | 
						|
/*        Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. */
 | 
						|
/*     If JOBZ == 'F', then the above descriptions hold for */
 | 
						|
/*     the columns of Z*V, where the columns of V are the */
 | 
						|
/*     eigenvectors of the K-by-K Rayleigh quotient, and Z is */
 | 
						|
/*     orthonormal. The columns of V are similarly structured: */
 | 
						|
/*     If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if */
 | 
						|
/*     IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and */
 | 
						|
/*                       Z*V(:,i)-sqrt(-1)*Z*V(:,i+1) */
 | 
						|
/*     are the eigenvectors of LAMBDA(i), LAMBDA(i+1). */
 | 
						|
/*     See the descriptions of REIG, IMEIG, X and V. */
 | 
						|
/* ..... */
 | 
						|
/*     LDZ (input) INTEGER , LDZ >= M */
 | 
						|
/*     The leading dimension of the array Z. */
 | 
						|
/* ..... */
 | 
						|
/*     RES (output) REAL(KIND=WP) (N-1)-by-1 array */
 | 
						|
/*     RES(1:K) contains the residuals for the K computed */
 | 
						|
/*     Ritz pairs. */
 | 
						|
/*     If LAMBDA(i) is real, then */
 | 
						|
/*        RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. */
 | 
						|
/*     If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair */
 | 
						|
/*     then */
 | 
						|
/*     RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F */
 | 
						|
/*     where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] */
 | 
						|
/*               [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. */
 | 
						|
/*     It holds that */
 | 
						|
/*     RES(i)   = || A*ZC(:,i)   - LAMBDA(i)  *ZC(:,i)   ||_2 */
 | 
						|
/*     RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 */
 | 
						|
/*     where ZC(:,i)   =  Z(:,i) + sqrt(-1)*Z(:,i+1) */
 | 
						|
/*           ZC(:,i+1) =  Z(:,i) - sqrt(-1)*Z(:,i+1) */
 | 
						|
/*     See the description of Z. */
 | 
						|
/* ..... */
 | 
						|
/*     B (output) REAL(KIND=WP)  MIN(M,N)-by-(N-1) array. */
 | 
						|
/*     IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can */
 | 
						|
/*     be used for computing the refined vectors; see further */
 | 
						|
/*     details in the provided references. */
 | 
						|
/*     If JOBF == 'E', B(1:N,1;K) contains */
 | 
						|
/*     A*U(:,1:K)*W(1:K,1:K), which are the vectors from the */
 | 
						|
/*     Exact DMD, up to scaling by the inverse eigenvalues. */
 | 
						|
/*     In both cases, the content of B can be lifted to the */
 | 
						|
/*     original dimension of the input data by pre-multiplying */
 | 
						|
/*     with the Q factor from the initial QR factorization. */
 | 
						|
/*     Here A denotes a compression of the underlying operator. */
 | 
						|
/*     See the descriptions of F and X. */
 | 
						|
/*     If JOBF =='N', then B is not referenced. */
 | 
						|
/* ..... */
 | 
						|
/*     LDB (input) INTEGER, LDB >= MIN(M,N) */
 | 
						|
/*     The leading dimension of the array B. */
 | 
						|
/* ..... */
 | 
						|
/*     V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array */
 | 
						|
/*     On exit, V(1:K,1:K) contains the K eigenvectors of */
 | 
						|
/*     the Rayleigh quotient. The eigenvectors of a complex */
 | 
						|
/*     conjugate pair of eigenvalues are returned in real form */
 | 
						|
/*     as explained in the description of Z. The Ritz vectors */
 | 
						|
/*     (returned in Z) are the product of X and V; see */
 | 
						|
/*     the descriptions of X and Z. */
 | 
						|
/* ..... */
 | 
						|
/*     LDV (input) INTEGER, LDV >= N-1 */
 | 
						|
/*     The leading dimension of the array V. */
 | 
						|
/* ..... */
 | 
						|
/*     S (output) REAL(KIND=WP) (N-1)-by-(N-1) array */
 | 
						|
/*     The array S(1:K,1:K) is used for the matrix Rayleigh */
 | 
						|
/*     quotient. This content is overwritten during */
 | 
						|
/*     the eigenvalue decomposition by SGEEV. */
 | 
						|
/*     See the description of K. */
 | 
						|
/* ..... */
 | 
						|
/*     LDS (input) INTEGER, LDS >= N-1 */
 | 
						|
/*     The leading dimension of the array S. */
 | 
						|
/* ..... */
 | 
						|
/*     WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array */
 | 
						|
/*     On exit, */
 | 
						|
/*     WORK(1:MIN(M,N)) contains the scalar factors of the */
 | 
						|
/*     elementary reflectors as returned by SGEQRF of the */
 | 
						|
/*     M-by-N input matrix F. */
 | 
						|
/*     WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of */
 | 
						|
/*     the input submatrix F(1:M,1:N-1). */
 | 
						|
/*     If the call to SGEDMDQ is only workspace query, then */
 | 
						|
/*     WORK(1) contains the minimal workspace length and */
 | 
						|
/*     WORK(2) is the optimal workspace length. Hence, the */
 | 
						|
/*     length of work is at least 2. */
 | 
						|
/*     See the description of LWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     LWORK (input) INTEGER */
 | 
						|
/*     The minimal length of the  workspace vector WORK. */
 | 
						|
/*     LWORK is calculated as follows: */
 | 
						|
/*     Let MLWQR  = N (minimal workspace for SGEQRF[M,N]) */
 | 
						|
/*         MLWDMD = minimal workspace for SGEDMD (see the */
 | 
						|
/*                  description of LWORK in SGEDMD) for */
 | 
						|
/*                  snapshots of dimensions MIN(M,N)-by-(N-1) */
 | 
						|
/*         MLWMQR = N (minimal workspace for */
 | 
						|
/*                    SORMQR['L','N',M,N,N]) */
 | 
						|
/*         MLWGQR = N (minimal workspace for SORGQR[M,N,N]) */
 | 
						|
/*     Then */
 | 
						|
/*     LWORK = MAX(N+MLWQR, N+MLWDMD) */
 | 
						|
/*     is updated as follows: */
 | 
						|
/*        if   JOBZ == 'V' or JOBZ == 'F' THEN */
 | 
						|
/*             LWORK = MAX( LWORK,MIN(M,N)+N-1 +MLWMQR ) */
 | 
						|
/*        if   JOBQ == 'Q' THEN */
 | 
						|
/*             LWORK = MAX( LWORK,MIN(M,N)+N-1+MLWGQR) */
 | 
						|
/*     If on entry LWORK = -1, then a workspace query is */
 | 
						|
/*     assumed and the procedure only computes the minimal */
 | 
						|
/*     and the optimal workspace lengths for both WORK and */
 | 
						|
/*     IWORK. See the descriptions of WORK and IWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     IWORK (workspace/output) INTEGER LIWORK-by-1 array */
 | 
						|
/*     Workspace that is required only if WHTSVD equals */
 | 
						|
/*     2 , 3 or 4. (See the description of WHTSVD). */
 | 
						|
/*     If on entry LWORK =-1 or LIWORK=-1, then the */
 | 
						|
/*     minimal length of IWORK is computed and returned in */
 | 
						|
/*     IWORK(1). See the description of LIWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     LIWORK (input) INTEGER */
 | 
						|
/*     The minimal length of the workspace vector IWORK. */
 | 
						|
/*     If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 */
 | 
						|
/*     Let M1=MIN(M,N), N1=N-1. Then */
 | 
						|
/*     If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) */
 | 
						|
/*     If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) */
 | 
						|
/*     If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) */
 | 
						|
/*     If on entry LIWORK = -1, then a worskpace query is */
 | 
						|
/*     assumed and the procedure only computes the minimal */
 | 
						|
/*     and the optimal workspace lengths for both WORK and */
 | 
						|
/*     IWORK. See the descriptions of WORK and IWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     INFO (output) INTEGER */
 | 
						|
/*     -i < 0 :: On entry, the i-th argument had an */
 | 
						|
/*               illegal value */
 | 
						|
/*        = 0 :: Successful return. */
 | 
						|
/*        = 1 :: Void input. Quick exit (M=0 or N=0). */
 | 
						|
/*        = 2 :: The SVD computation of X did not converge. */
 | 
						|
/*               Suggestion: Check the input data and/or */
 | 
						|
/*               repeat with different WHTSVD. */
 | 
						|
/*        = 3 :: The computation of the eigenvalues did not */
 | 
						|
/*               converge. */
 | 
						|
/*        = 4 :: If data scaling was requested on input and */
 | 
						|
/*               the procedure found inconsistency in the data */
 | 
						|
/*               such that for some column index i, */
 | 
						|
/*               X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set */
 | 
						|
/*               to zero if JOBS=='C'. The computation proceeds */
 | 
						|
/*               with original or modified data and warning */
 | 
						|
/*               flag is set with INFO=4. */
 | 
						|
/* ............................................................. */
 | 
						|
/* ............................................................. */
 | 
						|
/*     Parameters */
 | 
						|
/*     ~~~~~~~~~~ */
 | 
						|
 | 
						|
/*     Local scalars */
 | 
						|
/*     ~~~~~~~~~~~~~ */
 | 
						|
 | 
						|
/*     Local array */
 | 
						|
/*     ~~~~~~~~~~~ */
 | 
						|
 | 
						|
/*     External functions (BLAS and LAPACK) */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~ */
 | 
						|
 | 
						|
/*     External subroutines (BLAS and LAPACK) */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~~~~ */
 | 
						|
/*     External subroutines */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~~~~ */
 | 
						|
/*     Intrinsic functions */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~~~ */
 | 
						|
    /* Parameter adjustments */
 | 
						|
    f_dim1 = *ldf;
 | 
						|
    f_offset = 1 + f_dim1 * 1;
 | 
						|
    f -= f_offset;
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
    y_dim1 = *ldy;
 | 
						|
    y_offset = 1 + y_dim1 * 1;
 | 
						|
    y -= y_offset;
 | 
						|
    --reig;
 | 
						|
    --imeig;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --res;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    v_dim1 = *ldv;
 | 
						|
    v_offset = 1 + v_dim1 * 1;
 | 
						|
    v -= v_offset;
 | 
						|
    s_dim1 = *lds;
 | 
						|
    s_offset = 1 + s_dim1 * 1;
 | 
						|
    s -= s_offset;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    one = 1.f;
 | 
						|
    zero = 0.f;
 | 
						|
/* .......................................................... */
 | 
						|
 | 
						|
/*    Test the input arguments */
 | 
						|
    wntres = lsame_(jobr, "R");
 | 
						|
    sccolx = lsame_(jobs, "S") || lsame_(jobs, "C");
 | 
						|
    sccoly = lsame_(jobs, "Y");
 | 
						|
    wntvec = lsame_(jobz, "V");
 | 
						|
    wntvcf = lsame_(jobz, "F");
 | 
						|
    wntvcq = lsame_(jobz, "Q");
 | 
						|
    wntref = lsame_(jobf, "R");
 | 
						|
    wntex = lsame_(jobf, "E");
 | 
						|
    wantq = lsame_(jobq, "Q");
 | 
						|
    wnttrf = lsame_(jobt, "R");
 | 
						|
    minmn = f2cmin(*m,*n);
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lwork == -1 || *liwork == -1;
 | 
						|
 | 
						|
    if (! (sccolx || sccoly || lsame_(jobs, "N"))) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (wntvec || wntvcf || wntvcq || lsame_(jobz, "N"))) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! (wntres || lsame_(jobr, "N")) || 
 | 
						|
	    wntres && lsame_(jobz, "N")) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (! (wantq || lsame_(jobq, "N"))) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (! (wnttrf || lsame_(jobt, "N"))) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (! (wntref || wntex || lsame_(jobf, "N")))
 | 
						|
	     {
 | 
						|
	*info = -6;
 | 
						|
    } else if (! (*whtsvd == 1 || *whtsvd == 2 || *whtsvd == 3 || *whtsvd == 
 | 
						|
	    4)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*m < 0) {
 | 
						|
	*info = -8;
 | 
						|
    } else if (*n < 0 || *n > *m + 1) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (*ldf < *m) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (*ldx < minmn) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*ldy < minmn) {
 | 
						|
	*info = -15;
 | 
						|
    } else if (! (*nrnk == -2 || *nrnk == -1 || *nrnk >= 1 && *nrnk <= *n)) {
 | 
						|
	*info = -16;
 | 
						|
    } else if (*tol < zero || *tol >= one) {
 | 
						|
	*info = -17;
 | 
						|
    } else if (*ldz < *m) {
 | 
						|
	*info = -22;
 | 
						|
    } else if ((wntref || wntex) && *ldb < minmn) {
 | 
						|
	*info = -25;
 | 
						|
    } else if (*ldv < *n - 1) {
 | 
						|
	*info = -27;
 | 
						|
    } else if (*lds < *n - 1) {
 | 
						|
	*info = -29;
 | 
						|
    }
 | 
						|
 | 
						|
    if (wntvec || wntvcf) {
 | 
						|
	*(unsigned char *)jobvl = 'V';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)jobvl = 'N';
 | 
						|
    }
 | 
						|
    if (*info == 0) {
 | 
						|
/* Compute the minimal and the optimal workspace */
 | 
						|
/* requirements. Simulate running the code and */
 | 
						|
/* determine minimal and optimal sizes of the */
 | 
						|
/* workspace at any moment of the run. */
 | 
						|
	if (*n == 0 || *n == 1) {
 | 
						|
/* All output except K is void. INFO=1 signals */
 | 
						|
/* the void input. In case of a workspace query, */
 | 
						|
/* the minimal workspace lengths are returned. */
 | 
						|
	    if (lquery) {
 | 
						|
		iwork[1] = 1;
 | 
						|
		work[1] = 2.f;
 | 
						|
		work[2] = 2.f;
 | 
						|
	    } else {
 | 
						|
		*k = 0;
 | 
						|
	    }
 | 
						|
	    *info = 1;
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
	mlwqr = f2cmax(1,*n);
 | 
						|
/* Minimal workspace length for SGEQRF. */
 | 
						|
	mlwork = f2cmin(*m,*n) + mlwqr;
 | 
						|
	if (lquery) {
 | 
						|
	    sgeqrf_(m, n, &f[f_offset], ldf, &work[1], rdummy, &c_n1, &info1);
 | 
						|
	    olwqr = (integer) rdummy[0];
 | 
						|
	    olwork = f2cmin(*m,*n) + olwqr;
 | 
						|
	}
 | 
						|
	i__1 = *n - 1;
 | 
						|
	sgedmd_(jobs, jobvl, jobr, jobf, whtsvd, &minmn, &i__1, &x[x_offset], 
 | 
						|
		ldx, &y[y_offset], ldy, nrnk, tol, k, &reig[1], &imeig[1], &
 | 
						|
		z__[z_offset], ldz, &res[1], &b[b_offset], ldb, &v[v_offset], 
 | 
						|
		ldv, &s[s_offset], lds, &work[1], &c_n1, &iwork[1], liwork, &
 | 
						|
		info1);
 | 
						|
	mlwdmd = (integer) work[1];
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = mlwork, i__2 = minmn + mlwdmd;
 | 
						|
	mlwork = f2cmax(i__1,i__2);
 | 
						|
	iminwr = iwork[1];
 | 
						|
	if (lquery) {
 | 
						|
	    olwdmd = (integer) work[2];
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = olwork, i__2 = minmn + olwdmd;
 | 
						|
	    olwork = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
	if (wntvec || wntvcf) {
 | 
						|
	    mlwmqr = f2cmax(1,*n);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = mlwork, i__2 = minmn + *n - 1 + mlwmqr;
 | 
						|
	    mlwork = f2cmax(i__1,i__2);
 | 
						|
	    if (lquery) {
 | 
						|
		sormqr_("L", "N", m, n, &minmn, &f[f_offset], ldf, &work[1], &
 | 
						|
			z__[z_offset], ldz, &work[1], &c_n1, &info1);
 | 
						|
		olwmqr = (integer) work[1];
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = olwork, i__2 = minmn + *n - 1 + olwmqr;
 | 
						|
		olwork = f2cmax(i__1,i__2);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (wantq) {
 | 
						|
	    mlwgqr = *n;
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = mlwork, i__2 = minmn + *n - 1 + mlwgqr;
 | 
						|
	    mlwork = f2cmax(i__1,i__2);
 | 
						|
	    if (lquery) {
 | 
						|
		sorgqr_(m, &minmn, &minmn, &f[f_offset], ldf, &work[1], &work[
 | 
						|
			1], &c_n1, &info1);
 | 
						|
		olwgqr = (integer) work[1];
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = olwork, i__2 = minmn + *n - 1 + olwgqr;
 | 
						|
		olwork = f2cmax(i__1,i__2);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	iminwr = f2cmax(1,iminwr);
 | 
						|
	mlwork = f2cmax(2,mlwork);
 | 
						|
	if (*lwork < mlwork && ! lquery) {
 | 
						|
	    *info = -31;
 | 
						|
	}
 | 
						|
	if (*liwork < iminwr && ! lquery) {
 | 
						|
	    *info = -33;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGEDMDQ", &i__1);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
/*     Return minimal and optimal workspace sizes */
 | 
						|
	iwork[1] = iminwr;
 | 
						|
	work[1] = (real) mlwork;
 | 
						|
	work[2] = (real) olwork;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
/* ..... */
 | 
						|
/*     Initial QR factorization that is used to represent the */
 | 
						|
/*     snapshots as elements of lower dimensional subspace. */
 | 
						|
/*     For large scale computation with M >>N , at this place */
 | 
						|
/*     one can use an out of core QRF. */
 | 
						|
 | 
						|
    i__1 = *lwork - minmn;
 | 
						|
    sgeqrf_(m, n, &f[f_offset], ldf, &work[1], &work[minmn + 1], &i__1, &
 | 
						|
	    info1);
 | 
						|
 | 
						|
/*     Define X and Y as the snapshots representations in the */
 | 
						|
/*     orthogonal basis computed in the QR factorization. */
 | 
						|
/*     X corresponds to the leading N-1 and Y to the trailing */
 | 
						|
/*     N-1 snapshots. */
 | 
						|
    i__1 = *n - 1;
 | 
						|
    slaset_("L", &minmn, &i__1, &zero, &zero, &x[x_offset], ldx);
 | 
						|
    i__1 = *n - 1;
 | 
						|
    slacpy_("U", &minmn, &i__1, &f[f_offset], ldf, &x[x_offset], ldx);
 | 
						|
    i__1 = *n - 1;
 | 
						|
    slacpy_("A", &minmn, &i__1, &f[(f_dim1 << 1) + 1], ldf, &y[y_offset], ldy);
 | 
						|
    if (*m >= 3) {
 | 
						|
	i__1 = minmn - 2;
 | 
						|
	i__2 = *n - 2;
 | 
						|
	slaset_("L", &i__1, &i__2, &zero, &zero, &y[y_dim1 + 3], ldy);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute the DMD of the projected snapshot pairs (X,Y) */
 | 
						|
    i__1 = *n - 1;
 | 
						|
    i__2 = *lwork - minmn;
 | 
						|
    sgedmd_(jobs, jobvl, jobr, jobf, whtsvd, &minmn, &i__1, &x[x_offset], ldx,
 | 
						|
	     &y[y_offset], ldy, nrnk, tol, k, &reig[1], &imeig[1], &z__[
 | 
						|
	    z_offset], ldz, &res[1], &b[b_offset], ldb, &v[v_offset], ldv, &s[
 | 
						|
	    s_offset], lds, &work[minmn + 1], &i__2, &iwork[1], liwork, &
 | 
						|
	    info1);
 | 
						|
    if (info1 == 2 || info1 == 3) {
 | 
						|
/* Return with error code. */
 | 
						|
	*info = info1;
 | 
						|
	return 0;
 | 
						|
    } else {
 | 
						|
	*info = info1;
 | 
						|
    }
 | 
						|
 | 
						|
/*     The Ritz vectors (Koopman modes) can be explicitly */
 | 
						|
/*     formed or returned in factored form. */
 | 
						|
    if (wntvec) {
 | 
						|
/* Compute the eigenvectors explicitly. */
 | 
						|
	if (*m > minmn) {
 | 
						|
	    i__1 = *m - minmn;
 | 
						|
	    slaset_("A", &i__1, k, &zero, &zero, &z__[minmn + 1 + z_dim1], 
 | 
						|
		    ldz);
 | 
						|
	}
 | 
						|
	i__1 = *lwork - (minmn + *n - 1);
 | 
						|
	sormqr_("L", "N", m, k, &minmn, &f[f_offset], ldf, &work[1], &z__[
 | 
						|
		z_offset], ldz, &work[minmn + *n], &i__1, &info1);
 | 
						|
    } else if (wntvcf) {
 | 
						|
/*   Return the Ritz vectors (eigenvectors) in factored */
 | 
						|
/*   form Z*V, where Z contains orthonormal matrix (the */
 | 
						|
/*   product of Q from the initial QR factorization and */
 | 
						|
/*   the SVD/POD_basis returned by SGEDMD in X) and the */
 | 
						|
/*   second factor (the eigenvectors of the Rayleigh */
 | 
						|
/*   quotient) is in the array V, as returned by SGEDMD. */
 | 
						|
	slacpy_("A", n, k, &x[x_offset], ldx, &z__[z_offset], ldz);
 | 
						|
	if (*m > *n) {
 | 
						|
	    i__1 = *m - *n;
 | 
						|
	    slaset_("A", &i__1, k, &zero, &zero, &z__[*n + 1 + z_dim1], ldz);
 | 
						|
	}
 | 
						|
	i__1 = *lwork - (minmn + *n - 1);
 | 
						|
	sormqr_("L", "N", m, k, &minmn, &f[f_offset], ldf, &work[1], &z__[
 | 
						|
		z_offset], ldz, &work[minmn + *n], &i__1, &info1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Some optional output variables: */
 | 
						|
 | 
						|
/*     The upper triangular factor in the initial QR */
 | 
						|
/*     factorization is optionally returned in the array Y. */
 | 
						|
/*     This is useful if this call to SGEDMDQ is to be */
 | 
						|
/*     followed by a streaming DMD that is implemented in a */
 | 
						|
/*     QR compressed form. */
 | 
						|
    if (wnttrf) {
 | 
						|
/* Return the upper triangular R in Y */
 | 
						|
	slaset_("A", &minmn, n, &zero, &zero, &y[y_offset], ldy);
 | 
						|
	slacpy_("U", &minmn, n, &f[f_offset], ldf, &y[y_offset], ldy);
 | 
						|
    }
 | 
						|
 | 
						|
/*     The orthonormal/orthogonal factor in the initial QR */
 | 
						|
/*     factorization is optionally returned in the array F. */
 | 
						|
/*     Same as with the triangular factor above, this is */
 | 
						|
/*     useful in a streaming DMD. */
 | 
						|
    if (wantq) {
 | 
						|
/* Q overwrites F */
 | 
						|
	i__1 = *lwork - (minmn + *n - 1);
 | 
						|
	sorgqr_(m, &minmn, &minmn, &f[f_offset], ldf, &work[1], &work[minmn + 
 | 
						|
		*n], &i__1, &info1);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
} /* sgedmdq_ */
 | 
						|
 |