156 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DPTTS2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptts2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptts2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptts2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPTTS2 solves a tridiagonal system of the form
 | 
						|
*>    A * X = B
 | 
						|
*> using the L*D*L**T factorization of A computed by DPTTRF.  D is a
 | 
						|
*> diagonal matrix specified in the vector D, L is a unit bidiagonal
 | 
						|
*> matrix whose subdiagonal is specified in the vector E, and X and B
 | 
						|
*> are N by NRHS matrices.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the tridiagonal matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the diagonal matrix D from the
 | 
						|
*>          L*D*L**T factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of the unit bidiagonal factor
 | 
						|
*>          L from the L*D*L**T factorization of A.  E can also be regarded
 | 
						|
*>          as the superdiagonal of the unit bidiagonal factor U from the
 | 
						|
*>          factorization A = U**T*D*U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side vectors B for the system of
 | 
						|
*>          linear equations.
 | 
						|
*>          On exit, the solution vectors, X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doublePTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   B( LDB, * ), D( * ), E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DSCAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.1 ) THEN
 | 
						|
         IF( N.EQ.1 )
 | 
						|
     $      CALL DSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve A * X = B using the factorization A = L*D*L**T,
 | 
						|
*     overwriting each right hand side vector with its solution.
 | 
						|
*
 | 
						|
      DO 30 J = 1, NRHS
 | 
						|
*
 | 
						|
*           Solve L * x = b.
 | 
						|
*
 | 
						|
         DO 10 I = 2, N
 | 
						|
            B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*           Solve D * L**T * x = b.
 | 
						|
*
 | 
						|
         B( N, J ) = B( N, J ) / D( N )
 | 
						|
         DO 20 I = N - 1, 1, -1
 | 
						|
            B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
 | 
						|
   20    CONTINUE
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPTTS2
 | 
						|
*
 | 
						|
      END
 |