285 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGECON
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGECON + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgecon.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgecon.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgecon.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
 | 
						|
*                          INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       DOUBLE PRECISION   ANORM, RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGECON estimates the reciprocal of the condition number of a general
 | 
						|
*> real matrix A, in either the 1-norm or the infinity-norm, using
 | 
						|
*> the LU factorization computed by DGETRF.
 | 
						|
*>
 | 
						|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | 
						|
*> condition number is computed as
 | 
						|
*>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies whether the 1-norm condition number or the
 | 
						|
*>          infinity-norm condition number is required:
 | 
						|
*>          = '1' or 'O':  1-norm;
 | 
						|
*>          = 'I':         Infinity-norm.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The factors L and U from the factorization A = P*L*U
 | 
						|
*>          as computed by DGETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ANORM
 | 
						|
*> \verbatim
 | 
						|
*>          ANORM is DOUBLE PRECISION
 | 
						|
*>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 | 
						|
*>          If NORM = 'I', the infinity-norm of the original matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          The reciprocal of the condition number of the matrix A,
 | 
						|
*>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (4*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>                NaNs are illegal values for ANORM, and they propagate to
 | 
						|
*>                the output parameter RCOND.
 | 
						|
*>                Infinity is illegal for ANORM, and it propagates to the output
 | 
						|
*>                parameter RCOND as 0.
 | 
						|
*>          = 1:  if RCOND = NaN, or
 | 
						|
*>                   RCOND = Inf, or
 | 
						|
*>                   the computed norm of the inverse of A is 0.
 | 
						|
*>                In the latter, RCOND = 0 is returned.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup gecon
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
      DOUBLE PRECISION   ANORM, RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ONENRM
 | 
						|
      CHARACTER          NORMIN
 | 
						|
      INTEGER            IX, KASE, KASE1
 | 
						|
      DOUBLE PRECISION   AINVNM, SCALE, SL, SMLNUM, SU, HUGEVAL
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, DISNAN
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, IDAMAX, DLAMCH, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      HUGEVAL = DLAMCH( 'Overflow' )
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | 
						|
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( ANORM.LT.ZERO ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGECON', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RCOND = ZERO
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM.EQ.ZERO ) THEN
 | 
						|
         RETURN
 | 
						|
      ELSE IF( DISNAN( ANORM ) ) THEN
 | 
						|
         RCOND = ANORM
 | 
						|
         INFO = -5
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM.GT.HUGEVAL ) THEN
 | 
						|
         INFO = -5
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Estimate the norm of inv(A).
 | 
						|
*
 | 
						|
      AINVNM = ZERO
 | 
						|
      NORMIN = 'N'
 | 
						|
      IF( ONENRM ) THEN
 | 
						|
         KASE1 = 1
 | 
						|
      ELSE
 | 
						|
         KASE1 = 2
 | 
						|
      END IF
 | 
						|
      KASE = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.KASE1 ) THEN
 | 
						|
*
 | 
						|
*           Multiply by inv(L).
 | 
						|
*
 | 
						|
            CALL DLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
 | 
						|
     $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
 | 
						|
*
 | 
						|
*           Multiply by inv(U).
 | 
						|
*
 | 
						|
            CALL DLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
 | 
						|
     $                   A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(U**T).
 | 
						|
*
 | 
						|
            CALL DLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
 | 
						|
     $                   LDA, WORK, SU, WORK( 3*N+1 ), INFO )
 | 
						|
*
 | 
						|
*           Multiply by inv(L**T).
 | 
						|
*
 | 
						|
            CALL DLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
 | 
						|
     $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Divide X by 1/(SL*SU) if doing so will not cause overflow.
 | 
						|
*
 | 
						|
         SCALE = SL*SU
 | 
						|
         NORMIN = 'Y'
 | 
						|
         IF( SCALE.NE.ONE ) THEN
 | 
						|
            IX = IDAMAX( N, WORK, 1 )
 | 
						|
            IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
 | 
						|
     $         GO TO 20
 | 
						|
            CALL DRSCL( N, SCALE, WORK, 1 )
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM.NE.ZERO ) THEN
 | 
						|
         RCOND = ( ONE / AINVNM ) / ANORM
 | 
						|
      ELSE
 | 
						|
         INFO = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check for NaNs and Infs
 | 
						|
*
 | 
						|
      IF( DISNAN( RCOND ) .OR. RCOND.GT.HUGEVAL )
 | 
						|
     $   INFO = 1
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGECON
 | 
						|
*
 | 
						|
      END
 |