178 lines
8.5 KiB
C
178 lines
8.5 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e32m1()
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define FLOAT_V_T_M1 vfloat32m1_t
|
|
#define VLEV_FLOAT __riscv_vle32_v_f32m4
|
|
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4
|
|
#define VSEV_FLOAT __riscv_vse32_v_f32m4
|
|
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4
|
|
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
|
|
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
|
|
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4
|
|
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
|
|
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
|
|
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
|
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
|
|
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32
|
|
#else
|
|
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e64m1()
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define FLOAT_V_T_M1 vfloat64m1_t
|
|
#define VLEV_FLOAT __riscv_vle64_v_f64m4
|
|
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4
|
|
#define VSEV_FLOAT __riscv_vse64_v_f64m4
|
|
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4
|
|
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
|
|
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
|
|
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4
|
|
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
|
|
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
|
|
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
|
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
|
|
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64
|
|
#endif
|
|
|
|
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i,
|
|
FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
|
|
{
|
|
BLASLONG i, j, k;
|
|
BLASLONG ix,iy;
|
|
BLASLONG jx,jy;
|
|
FLOAT temp1[2];
|
|
FLOAT temp2[2];
|
|
FLOAT *a_ptr = a;
|
|
BLASLONG gvl = VSETVL_MAX;
|
|
FLOAT_V_T_M1 v_res, v_z0;
|
|
v_res = VFMVVF_FLOAT_M1(0, gvl);
|
|
v_z0 = VFMVVF_FLOAT_M1(0, gvl);
|
|
|
|
|
|
FLOAT_V_T va_r, va_i, vx_r, vx_i, vy_r, vy_i, vr_r, vr_i;
|
|
BLASLONG stride_x, stride_y, inc_xv, inc_yv;
|
|
|
|
BLASLONG m1 = m - offset;
|
|
jx = m1 * inc_x;
|
|
jy = m1 * inc_y;
|
|
a_ptr += m1 * lda;
|
|
stride_x = 2 * inc_x * sizeof(FLOAT);
|
|
stride_y = 2 * inc_y * sizeof(FLOAT);
|
|
for (j=m1; j<m; j++)
|
|
{
|
|
temp1[0] = alpha_r * x[2 * jx] - alpha_i * x[2 * jx + 1];
|
|
temp1[1] = alpha_r * x[2 * jx + 1] + alpha_i * x[2 * jx];
|
|
temp2[0] = 0;
|
|
temp2[1] = 0;
|
|
if(j > 0){
|
|
ix = 0;
|
|
iy = 0;
|
|
i = 0;
|
|
gvl = VSETVL(j);
|
|
inc_xv = inc_x * gvl;
|
|
inc_yv = inc_y * gvl;
|
|
vr_r = VFMVVF_FLOAT(0, gvl);
|
|
vr_i = VFMVVF_FLOAT(0, gvl);
|
|
for(k = 0; k < j / gvl; k++){
|
|
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl);
|
|
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl);
|
|
|
|
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl);
|
|
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl);
|
|
|
|
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl);
|
|
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl);
|
|
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl);
|
|
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl);
|
|
|
|
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl);
|
|
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl);
|
|
|
|
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl);
|
|
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl);
|
|
vr_r = VFMACCVV_FLOAT(vr_r, vx_r, va_r, gvl);
|
|
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl);
|
|
vr_i = VFMACCVV_FLOAT(vr_i, vx_r, va_i, gvl);
|
|
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl);
|
|
|
|
i += gvl;
|
|
ix += inc_xv;
|
|
iy += inc_yv;
|
|
}
|
|
|
|
if(i < j){
|
|
unsigned int gvl_rem = VSETVL(j-i);
|
|
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl_rem);
|
|
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl_rem);
|
|
|
|
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl_rem);
|
|
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl_rem);
|
|
|
|
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl_rem);
|
|
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl_rem);
|
|
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl_rem);
|
|
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl_rem);
|
|
|
|
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl_rem);
|
|
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl_rem);
|
|
|
|
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl_rem);
|
|
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl_rem);
|
|
vr_r = VFMACCVV_FLOAT_TU(vr_r, vx_r, va_r, gvl_rem);
|
|
vr_r = VFNMSACVV_FLOAT_TU(vr_r, vx_i, va_i, gvl_rem);
|
|
vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_r, va_i, gvl_rem);
|
|
vr_i = VFMACCVV_FLOAT_TU(vr_i, vx_i, va_r, gvl_rem);
|
|
|
|
}
|
|
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl);
|
|
temp2[0] = VFMVFS_FLOAT_M1(v_res);
|
|
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl);
|
|
temp2[1] = VFMVFS_FLOAT_M1(v_res);
|
|
}
|
|
|
|
y[2 * jy] += temp1[0] * a_ptr[j * 2] - temp1[1] * a_ptr[j * 2 + 1] + alpha_r * temp2[0] - alpha_i * temp2[1];
|
|
y[2 * jy + 1] += temp1[1] * a_ptr[j * 2] + temp1[0] * a_ptr[j * 2 + 1] + alpha_r * temp2[1] + alpha_i * temp2[0];
|
|
|
|
a_ptr += 2 * lda;
|
|
jx += inc_x;
|
|
jy += inc_y;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|