229 lines
8.4 KiB
C
229 lines
8.4 KiB
C
/***************************************************************************
|
|
Copyright (c) 2022, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define FLOAT_VX2_T vfloat32m4x2_t
|
|
#define VGET_VX2 __riscv_vget_v_f32m4x2_f32m4
|
|
#define VSET_VX2 __riscv_vset_v_f32m4_f32m4x2
|
|
#define VLEV_FLOAT __riscv_vle32_v_f32m4
|
|
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4
|
|
#define VSEV_FLOAT __riscv_vse32_v_f32m4
|
|
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4
|
|
#define VLSEG_FLOAT __riscv_vlseg2e32_v_f32m4x2
|
|
#define VSSEG_FLOAT __riscv_vsseg2e32_v_f32m4x2
|
|
#define VLSSEG_FLOAT __riscv_vlsseg2e32_v_f32m4x2
|
|
#define VSSSEG_FLOAT __riscv_vssseg2e32_v_f32m4x2
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f32m4
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4
|
|
#else
|
|
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define FLOAT_VX2_T vfloat64m4x2_t
|
|
#define VGET_VX2 __riscv_vget_v_f64m4x2_f64m4
|
|
#define VSET_VX2 __riscv_vset_v_f64m4_f64m4x2
|
|
#define VLEV_FLOAT __riscv_vle64_v_f64m4
|
|
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4
|
|
#define VSEV_FLOAT __riscv_vse64_v_f64m4
|
|
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4
|
|
#define VLSEG_FLOAT __riscv_vlseg2e64_v_f64m4x2
|
|
#define VSSEG_FLOAT __riscv_vsseg2e64_v_f64m4x2
|
|
#define VLSSEG_FLOAT __riscv_vlsseg2e64_v_f64m4x2
|
|
#define VSSSEG_FLOAT __riscv_vssseg2e64_v_f64m4x2
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f64m4
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4
|
|
#endif
|
|
|
|
int CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT c, FLOAT s)
|
|
{
|
|
|
|
if (n <= 0) return(0);
|
|
|
|
FLOAT_V_T vt0, vt1, vx0, vx1, vy0, vy1;
|
|
FLOAT_VX2_T vxx2, vyx2, vtx2;
|
|
|
|
if (inc_x == 0 && inc_y == 0) {
|
|
BLASLONG i=0;
|
|
BLASLONG ix=0,iy=0;
|
|
FLOAT temp[2];
|
|
BLASLONG inc_x2;
|
|
BLASLONG inc_y2;
|
|
|
|
inc_x2 = 2 * inc_x ;
|
|
inc_y2 = 2 * inc_y ;
|
|
|
|
while(i < n)
|
|
{
|
|
temp[0] = c*x[ix] + s*y[iy] ;
|
|
temp[1] = c*x[ix+1] + s*y[iy+1] ;
|
|
y[iy] = c*y[iy] - s*x[ix] ;
|
|
y[iy+1] = c*y[iy+1] - s*x[ix+1] ;
|
|
x[ix] = temp[0] ;
|
|
x[ix+1] = temp[1] ;
|
|
|
|
ix += inc_x2 ;
|
|
iy += inc_y2 ;
|
|
i++ ;
|
|
}
|
|
}
|
|
else if(inc_x == 1 && inc_y == 1) {
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*2, y += vl*2) {
|
|
vl = VSETVL(n);
|
|
|
|
vxx2 = VLSEG_FLOAT(x, vl);
|
|
vyx2 = VLSEG_FLOAT(y, vl);
|
|
|
|
vx0 = VGET_VX2(vxx2, 0);
|
|
vx1 = VGET_VX2(vxx2, 1);
|
|
vy0 = VGET_VX2(vyx2, 0);
|
|
vy1 = VGET_VX2(vyx2, 1);
|
|
|
|
vt0 = VFMULVF_FLOAT(vx0, c, vl);
|
|
vt0 = VFMACCVF_FLOAT(vt0, s, vy0, vl);
|
|
vt1 = VFMULVF_FLOAT(vx1, c, vl);
|
|
vt1 = VFMACCVF_FLOAT(vt1, s, vy1, vl);
|
|
vy0 = VFMULVF_FLOAT(vy0, c, vl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, s, vx0, vl);
|
|
vy1 = VFMULVF_FLOAT(vy1, c, vl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, s, vx1, vl);
|
|
|
|
vtx2 = VSET_VX2(vtx2, 0, vt0);
|
|
vtx2 = VSET_VX2(vtx2, 1, vt1);
|
|
vyx2 = VSET_VX2(vyx2, 0, vy0);
|
|
vyx2 = VSET_VX2(vyx2, 1, vy1);
|
|
|
|
VSSEG_FLOAT(x, vtx2, vl);
|
|
VSSEG_FLOAT(y, vyx2, vl);
|
|
}
|
|
|
|
} else if (inc_x == 1){
|
|
BLASLONG stride_y = inc_y * 2 * sizeof(FLOAT);
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*2, y += vl*inc_y*2) {
|
|
vl = VSETVL(n);
|
|
|
|
vxx2 = VLSEG_FLOAT(x, vl);
|
|
vyx2 = VLSSEG_FLOAT(y, stride_y, vl);
|
|
|
|
vx0 = VGET_VX2(vxx2, 0);
|
|
vx1 = VGET_VX2(vxx2, 1);
|
|
vy0 = VGET_VX2(vyx2, 0);
|
|
vy1 = VGET_VX2(vyx2, 1);
|
|
|
|
vt0 = VFMULVF_FLOAT(vx0, c, vl);
|
|
vt0 = VFMACCVF_FLOAT(vt0, s, vy0, vl);
|
|
vt1 = VFMULVF_FLOAT(vx1, c, vl);
|
|
vt1 = VFMACCVF_FLOAT(vt1, s, vy1, vl);
|
|
vy0 = VFMULVF_FLOAT(vy0, c, vl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, s, vx0, vl);
|
|
vy1 = VFMULVF_FLOAT(vy1, c, vl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, s, vx1, vl);
|
|
|
|
vtx2 = VSET_VX2(vtx2, 0, vt0);
|
|
vtx2 = VSET_VX2(vtx2, 1, vt1);
|
|
vyx2 = VSET_VX2(vyx2, 0, vy0);
|
|
vyx2 = VSET_VX2(vyx2, 1, vy1);
|
|
|
|
VSSEG_FLOAT(x, vtx2, vl);
|
|
VSSSEG_FLOAT(y, stride_y, vyx2, vl);
|
|
}
|
|
|
|
} else if (inc_y == 1){
|
|
BLASLONG stride_x = inc_x * 2 * sizeof(FLOAT);
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*inc_x*2, y += vl*2) {
|
|
vl = VSETVL(n);
|
|
|
|
vxx2 = VLSSEG_FLOAT(x, stride_x, vl);
|
|
vyx2 = VLSEG_FLOAT(y, vl);
|
|
|
|
vx0 = VGET_VX2(vxx2, 0);
|
|
vx1 = VGET_VX2(vxx2, 1);
|
|
vy0 = VGET_VX2(vyx2, 0);
|
|
vy1 = VGET_VX2(vyx2, 1);
|
|
|
|
vt0 = VFMULVF_FLOAT(vx0, c, vl);
|
|
vt0 = VFMACCVF_FLOAT(vt0, s, vy0, vl);
|
|
vt1 = VFMULVF_FLOAT(vx1, c, vl);
|
|
vt1 = VFMACCVF_FLOAT(vt1, s, vy1, vl);
|
|
vy0 = VFMULVF_FLOAT(vy0, c, vl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, s, vx0, vl);
|
|
vy1 = VFMULVF_FLOAT(vy1, c, vl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, s, vx1, vl);
|
|
|
|
vtx2 = VSET_VX2(vtx2, 0, vt0);
|
|
vtx2 = VSET_VX2(vtx2, 1, vt1);
|
|
vyx2 = VSET_VX2(vyx2, 0, vy0);
|
|
vyx2 = VSET_VX2(vyx2, 1, vy1);
|
|
|
|
VSSSEG_FLOAT(x, stride_x, vtx2, vl);
|
|
VSSEG_FLOAT(y, vyx2, vl);
|
|
}
|
|
|
|
} else {
|
|
BLASLONG stride_x = inc_x * 2 * sizeof(FLOAT);
|
|
BLASLONG stride_y = inc_y * 2 * sizeof(FLOAT);
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*inc_x*2, y += vl*inc_y*2) {
|
|
vl = VSETVL(n);
|
|
|
|
vxx2 = VLSSEG_FLOAT(x, stride_x, vl);
|
|
vyx2 = VLSSEG_FLOAT(y, stride_y, vl);
|
|
|
|
vx0 = VGET_VX2(vxx2, 0);
|
|
vx1 = VGET_VX2(vxx2, 1);
|
|
vy0 = VGET_VX2(vyx2, 0);
|
|
vy1 = VGET_VX2(vyx2, 1);
|
|
|
|
vt0 = VFMULVF_FLOAT(vx0, c, vl);
|
|
vt0 = VFMACCVF_FLOAT(vt0, s, vy0, vl);
|
|
vt1 = VFMULVF_FLOAT(vx1, c, vl);
|
|
vt1 = VFMACCVF_FLOAT(vt1, s, vy1, vl);
|
|
vy0 = VFMULVF_FLOAT(vy0, c, vl);
|
|
vy0 = VFNMSACVF_FLOAT(vy0, s, vx0, vl);
|
|
vy1 = VFMULVF_FLOAT(vy1, c, vl);
|
|
vy1 = VFNMSACVF_FLOAT(vy1, s, vx1, vl);
|
|
|
|
vtx2 = VSET_VX2(vtx2, 0, vt0);
|
|
vtx2 = VSET_VX2(vtx2, 1, vt1);
|
|
vyx2 = VSET_VX2(vyx2, 0, vy0);
|
|
vyx2 = VSET_VX2(vyx2, 1, vy1);
|
|
|
|
VSSSEG_FLOAT(x, stride_x, vtx2, vl);
|
|
VSSSEG_FLOAT(y, stride_y, vyx2, vl);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|