217 lines
9.2 KiB
C
217 lines
9.2 KiB
C
/***************************************************************************
|
|
Copyright (c) 2022, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
|
|
#include "common.h"
|
|
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL_MAX_M1 __riscv_vsetvlmax_e32m1()
|
|
#define VSETVL(n) __riscv_vsetvl_e32m8(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e32m8()
|
|
#define FLOAT_V_T_M1 vfloat32m1_t
|
|
#define FLOAT_V_T vfloat32m8_t
|
|
#define VLEV_FLOAT __riscv_vle32_v_f32m8
|
|
#define VSEV_FLOAT __riscv_vse32_v_f32m8
|
|
#define VLSEV_FLOAT __riscv_vlse32_v_f32m8
|
|
#define VSSEV_FLOAT __riscv_vsse32_v_f32m8
|
|
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m8_tu
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m8
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m8
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f32m8
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m8
|
|
#define VFMSACVF_FLOAT __riscv_vfmsac_vf_f32m8
|
|
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
|
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m8_f32m1
|
|
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32
|
|
#else
|
|
#define VSETVL_MAX_M1 __riscv_vsetvlmax_e64m1()
|
|
#define VSETVL(n) __riscv_vsetvl_e64m8(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e64m8()
|
|
#define FLOAT_V_T_M1 vfloat64m1_t
|
|
#define FLOAT_V_T vfloat64m8_t
|
|
#define VLEV_FLOAT __riscv_vle64_v_f64m8
|
|
#define VSEV_FLOAT __riscv_vse64_v_f64m8
|
|
#define VLSEV_FLOAT __riscv_vlse64_v_f64m8
|
|
#define VSSEV_FLOAT __riscv_vsse64_v_f64m8
|
|
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m8_tu
|
|
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m8
|
|
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m8
|
|
#define VFMULVF_FLOAT __riscv_vfmul_vf_f64m8
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m8
|
|
#define VFMSACVF_FLOAT __riscv_vfmsac_vf_f64m8
|
|
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
|
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m8_f64m1
|
|
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64
|
|
#endif
|
|
|
|
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
|
|
{
|
|
BLASLONG i, j, k;
|
|
BLASLONG ix,iy;
|
|
BLASLONG jx,jy;
|
|
FLOAT temp1;
|
|
FLOAT *a_ptr = a;
|
|
FLOAT_V_T_M1 v_res, v_z0;
|
|
size_t vl_max = VSETVL_MAX_M1, vl;
|
|
v_z0 = VFMVVF_FLOAT_M1(0, vl_max);
|
|
vl_max = VSETVL_MAX;
|
|
|
|
FLOAT_V_T va, vx, vy, vr;
|
|
BLASLONG stride_x, stride_y, inc_xv, inc_yv;
|
|
|
|
BLASLONG m1 = m - offset;
|
|
if(inc_x == 1 && inc_y == 1)
|
|
{
|
|
a_ptr += m1 * lda;
|
|
for (j=m1; j<m; j++)
|
|
{
|
|
temp1 = alpha * x[j];
|
|
i = 0;
|
|
vr = VFMVVF_FLOAT(0, vl_max);
|
|
for (k = j; k > 0; k -= vl, i += vl)
|
|
{
|
|
vl = VSETVL(k);
|
|
vy = VLEV_FLOAT(&y[i], vl);
|
|
va = VLEV_FLOAT(&a_ptr[i], vl);
|
|
vy = VFMACCVF_FLOAT(vy, temp1, va, vl);
|
|
VSEV_FLOAT(&y[i], vy, vl);
|
|
|
|
vx = VLEV_FLOAT(&x[i], vl);
|
|
vr = VFMACCVV_FLOAT_TU(vr, vx, va, vl);
|
|
}
|
|
v_res = VFREDSUM_FLOAT(vr, v_z0, vl_max);
|
|
|
|
y[j] += temp1 * a_ptr[j] + alpha * VFMVFS_FLOAT_M1(v_res);
|
|
a_ptr += lda;
|
|
}
|
|
}
|
|
else if(inc_x == 1)
|
|
{
|
|
jy = m1 * inc_y;
|
|
a_ptr += m1 * lda;
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
for (j=m1; j<m; j++)
|
|
{
|
|
temp1 = alpha * x[j];
|
|
iy = 0;
|
|
i = 0;
|
|
vr = VFMVVF_FLOAT(0, vl_max);
|
|
for (k = j; k > 0; k -= vl, i += vl)
|
|
{
|
|
vl = VSETVL(k);
|
|
inc_yv = inc_y * vl;
|
|
vy = VLSEV_FLOAT(&y[iy], stride_y, vl);
|
|
va = VLEV_FLOAT(&a_ptr[i], vl);
|
|
vy = VFMACCVF_FLOAT(vy, temp1, va, vl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy, vl);
|
|
|
|
vx = VLEV_FLOAT(&x[i], vl);
|
|
vr = VFMACCVV_FLOAT_TU(vr, vx, va, vl);
|
|
|
|
iy += inc_yv;
|
|
}
|
|
v_res = VFREDSUM_FLOAT(vr, v_z0, vl_max);
|
|
|
|
y[jy] += temp1 * a_ptr[j] + alpha * VFMVFS_FLOAT_M1(v_res);
|
|
a_ptr += lda;
|
|
jy += inc_y;
|
|
}
|
|
}
|
|
else if(inc_y == 1)
|
|
{
|
|
jx = m1 * inc_x;
|
|
a_ptr += m1 * lda;
|
|
stride_x = inc_x * sizeof(FLOAT);
|
|
for (j=m1; j<m; j++)
|
|
{
|
|
temp1 = alpha * x[jx];
|
|
ix = 0;
|
|
i = 0;
|
|
vr = VFMVVF_FLOAT(0, vl_max);
|
|
for (k = j; k > 0; k -= vl, i += vl)
|
|
{
|
|
vl = VSETVL(k);
|
|
inc_xv = inc_x * vl;
|
|
|
|
vy = VLEV_FLOAT(&y[i], vl);
|
|
va = VLEV_FLOAT(&a_ptr[i], vl);
|
|
vy = VFMACCVF_FLOAT(vy, temp1, va, vl);
|
|
VSEV_FLOAT(&y[i], vy, vl);
|
|
|
|
vx = VLSEV_FLOAT(&x[ix], stride_x, vl);
|
|
vr = VFMACCVV_FLOAT_TU(vr, vx, va, vl);
|
|
|
|
ix += inc_xv;
|
|
}
|
|
v_res = VFREDSUM_FLOAT(vr, v_z0, vl_max);
|
|
|
|
y[j] += temp1 * a_ptr[j] + alpha * VFMVFS_FLOAT_M1(v_res);
|
|
a_ptr += lda;
|
|
jx += inc_x;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
jx = m1 * inc_x;
|
|
jy = m1 * inc_y;
|
|
a_ptr += m1 * lda;
|
|
stride_x = inc_x * sizeof(FLOAT);
|
|
stride_y = inc_y * sizeof(FLOAT);
|
|
for (j=m1; j<m; j++)
|
|
{
|
|
temp1 = alpha * x[jx];
|
|
|
|
ix = 0;
|
|
iy = 0;
|
|
i = 0;
|
|
vr = VFMVVF_FLOAT(0, vl_max);
|
|
for (k = j; k > 0; k -= vl, i += vl)
|
|
{
|
|
vl = VSETVL(k);
|
|
inc_xv = inc_x * vl;
|
|
inc_yv = inc_y * vl;
|
|
vy = VLSEV_FLOAT(&y[iy], stride_y, vl);
|
|
va = VLEV_FLOAT(&a_ptr[i], vl);
|
|
vy = VFMACCVF_FLOAT(vy, temp1, va, vl);
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy, vl);
|
|
|
|
vx = VLSEV_FLOAT(&x[ix], stride_x, vl);
|
|
vr = VFMACCVV_FLOAT_TU(vr, vx, va, vl);
|
|
ix += inc_xv;
|
|
iy += inc_yv;
|
|
}
|
|
v_res = VFREDSUM_FLOAT(vr, v_z0, vl_max);
|
|
|
|
y[jy] += temp1 * a_ptr[j] + alpha * VFMVFS_FLOAT_M1(v_res);
|
|
a_ptr += lda;
|
|
jx += inc_x;
|
|
jy += inc_y;
|
|
}
|
|
}
|
|
return(0);
|
|
}
|