199 lines
8.2 KiB
C
199 lines
8.2 KiB
C
/***************************************************************************
|
|
Copyright (c) 2020, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#if defined(DOUBLE)
|
|
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e64m4)(n)
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define FLOAT_V_T_M1 vfloat64m1_t
|
|
#define VLEV_FLOAT RISCV_RVV(vle64_v_f64m4)
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse64_v_f64m4)
|
|
#ifdef RISCV_0p10_INTRINSICS
|
|
#define VFREDMAXVS_FLOAT(va, vb, gvl) vfredmax_vs_f64m4_f64m1(v_res, va, vb, gvl)
|
|
#define VADDVX_MASK_UINT RISCV_RVV(vadd_vx_u64m4_m)
|
|
#define VCOMPRESS(va, vm, gvl) RISCV_RVV(vcompress_vm_u64m4)(vm, compressed, va, gvl)
|
|
#else
|
|
#define VFREDMAXVS_FLOAT RISCV_RVV(vfredmax_vs_f64m4_f64m1)
|
|
#define VADDVX_MASK_UINT RISCV_RVV(vadd_vx_u64m4_mu)
|
|
#define VCOMPRESS RISCV_RVV(vcompress_vm_u64m4)
|
|
#endif
|
|
#define MASK_T vbool16_t
|
|
#define VMFLTVV_FLOAT RISCV_RVV(vmflt_vv_f64m4_b16)
|
|
#define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f64m4)
|
|
#define VFMVVF_FLOAT_M1 RISCV_RVV(vfmv_v_f_f64m1)
|
|
#define VFMAXVV_FLOAT RISCV_RVV(vfmax_vv_f64m4)
|
|
#define VMFGEVF_FLOAT RISCV_RVV(vmfge_vf_f64m4_b16)
|
|
#define VMFIRSTM RISCV_RVV(vfirst_m_b16)
|
|
#define UINT_V_T vuint64m4_t
|
|
#define VIDV_UINT RISCV_RVV(vid_v_u64m4)
|
|
#define VADDVX_UINT RISCV_RVV(vadd_vx_u64m4)
|
|
#define VMVVX_UINT RISCV_RVV(vmv_v_x_u64m4)
|
|
#define VFABS_FLOAT RISCV_RVV(vfabs_v_f64m4)
|
|
#define VMV_X RISCV_RVV(vmv_x_s_u64m4_u64)
|
|
#else
|
|
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e32m4)(n)
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define FLOAT_V_T_M1 vfloat32m1_t
|
|
#define VLEV_FLOAT RISCV_RVV(vle32_v_f32m4)
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse32_v_f32m4)
|
|
#ifdef RISCV_0p10_INTRINSICS
|
|
#define VFREDMAXVS_FLOAT(va, vb, gvl) vfredmax_vs_f32m4_f32m1(v_res, va, vb, gvl)
|
|
#define VADDVX_MASK_UINT RISCV_RVV(vadd_vx_u32m4_m)
|
|
#define VCOMPRESS(va, vm, gvl) RISCV_RVV(vcompress_vm_u32m4)(vm, compressed, va, gvl)
|
|
#else
|
|
#define VFREDMAXVS_FLOAT RISCV_RVV(vfredmax_vs_f32m4_f32m1)
|
|
#define VADDVX_MASK_UINT RISCV_RVV(vadd_vx_u32m4_mu)
|
|
#define VCOMPRESS RISCV_RVV(vcompress_vm_u32m4)
|
|
#endif
|
|
#define MASK_T vbool8_t
|
|
#define VMFLTVV_FLOAT RISCV_RVV(vmflt_vv_f32m4_b8)
|
|
#define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f32m4)
|
|
#define VFMVVF_FLOAT_M1 RISCV_RVV(vfmv_v_f_f32m1)
|
|
#define VFMAXVV_FLOAT RISCV_RVV(vfmax_vv_f32m4)
|
|
#define VMFGEVF_FLOAT RISCV_RVV(vmfge_vf_f32m4_b8)
|
|
#define VMFIRSTM RISCV_RVV(vfirst_m_b8)
|
|
#define UINT_V_T vuint32m4_t
|
|
#define VIDV_UINT RISCV_RVV(vid_v_u32m4)
|
|
#define VADDVX_UINT RISCV_RVV(vadd_vx_u32m4)
|
|
#define VMVVX_UINT RISCV_RVV(vmv_v_x_u32m4)
|
|
#define VFABS_FLOAT RISCV_RVV(vfabs_v_f32m4)
|
|
#define VMV_X RISCV_RVV(vmv_x_s_u32m4_u32)
|
|
#endif
|
|
|
|
|
|
BLASLONG CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x)
|
|
{
|
|
BLASLONG i=0, j=0;
|
|
unsigned int max_index = 0;
|
|
if (n <= 0 || inc_x <= 0) return(max_index);
|
|
FLOAT maxf=-FLT_MAX;
|
|
|
|
FLOAT_V_T vx, v_max;
|
|
UINT_V_T v_max_index;
|
|
MASK_T mask;
|
|
unsigned int gvl = 0;
|
|
FLOAT_V_T_M1 v_res;
|
|
v_res = VFMVVF_FLOAT_M1(-FLT_MAX, 1);
|
|
|
|
gvl = VSETVL(n);
|
|
UINT_V_T vid = VIDV_UINT(gvl);
|
|
|
|
if(inc_x == 1){
|
|
v_max_index = VMVVX_UINT(0, gvl);
|
|
v_max = VFMVVF_FLOAT(-FLT_MAX, gvl);
|
|
for(i=0,j=0; i < n/gvl; i++){
|
|
vx = VLEV_FLOAT(&x[j], gvl);
|
|
vx = VFABS_FLOAT(vx, gvl);
|
|
|
|
//index where element greater than v_max
|
|
mask = VMFLTVV_FLOAT(v_max, vx, gvl);
|
|
v_max_index = VADDVX_MASK_UINT(mask, v_max_index, vid, j, gvl);
|
|
|
|
//update v_max and start_index j
|
|
v_max = VFMAXVV_FLOAT(v_max, vx, gvl);
|
|
j += gvl;
|
|
}
|
|
v_res = VFREDMAXVS_FLOAT(v_max, v_res, gvl);
|
|
maxf = EXTRACT_FLOAT(v_res);
|
|
mask = VMFGEVF_FLOAT(v_max, maxf, gvl);
|
|
UINT_V_T compressed;
|
|
compressed = VCOMPRESS(v_max_index, mask, gvl);
|
|
max_index = VMV_X(compressed);
|
|
|
|
if(j < n){
|
|
gvl = VSETVL(n-j);
|
|
v_max = VLEV_FLOAT(&x[j], gvl);
|
|
v_max = VFABS_FLOAT(v_max, gvl);
|
|
|
|
v_res = VFREDMAXVS_FLOAT(v_max, v_res, gvl);
|
|
FLOAT cur_maxf = EXTRACT_FLOAT(v_res);
|
|
if(cur_maxf > maxf){
|
|
//tail index
|
|
v_max_index = VADDVX_UINT(vid, j, gvl);
|
|
|
|
mask = VMFGEVF_FLOAT(v_max, cur_maxf, gvl);
|
|
UINT_V_T compressed;
|
|
compressed = VCOMPRESS(v_max_index, mask, gvl);
|
|
max_index = VMV_X(compressed);
|
|
}
|
|
}
|
|
}else{
|
|
gvl = VSETVL(n);
|
|
unsigned int stride_x = inc_x * sizeof(FLOAT);
|
|
unsigned int idx = 0, inc_v = gvl * inc_x;
|
|
|
|
v_max = VFMVVF_FLOAT(-FLT_MAX, gvl);
|
|
v_max_index = VMVVX_UINT(0, gvl);
|
|
for(i=0,j=0; i < n/gvl; i++){
|
|
vx = VLSEV_FLOAT(&x[idx], stride_x, gvl);
|
|
vx = VFABS_FLOAT(vx, gvl);
|
|
|
|
//index where element greater than v_max
|
|
mask = VMFLTVV_FLOAT(v_max, vx, gvl);
|
|
v_max_index = VADDVX_MASK_UINT(mask, v_max_index, vid, j, gvl);
|
|
|
|
//update v_max and start_index j
|
|
v_max = VFMAXVV_FLOAT(v_max, vx, gvl);
|
|
j += gvl;
|
|
idx += inc_v;
|
|
}
|
|
|
|
v_res = VFREDMAXVS_FLOAT(v_max, v_res, gvl);
|
|
maxf = EXTRACT_FLOAT(v_res);
|
|
mask = VMFGEVF_FLOAT(v_max, maxf, gvl);
|
|
UINT_V_T compressed;
|
|
compressed = VCOMPRESS(v_max_index, mask, gvl);
|
|
max_index = VMV_X(compressed);
|
|
|
|
if(j < n){
|
|
gvl = VSETVL(n-j);
|
|
v_max = VLSEV_FLOAT(&x[idx], stride_x, gvl);
|
|
v_max = VFABS_FLOAT(v_max, gvl);
|
|
|
|
v_res = VFREDMAXVS_FLOAT(v_max, v_res, gvl);
|
|
FLOAT cur_maxf = EXTRACT_FLOAT(v_res);
|
|
|
|
if(cur_maxf > maxf){
|
|
//tail index
|
|
v_max_index = VADDVX_UINT(vid, j, gvl);
|
|
|
|
mask = VMFGEVF_FLOAT(v_max, cur_maxf, gvl);
|
|
|
|
UINT_V_T compressed;
|
|
compressed = VCOMPRESS(v_max_index, mask, gvl);
|
|
max_index = VMV_X(compressed);
|
|
}
|
|
}
|
|
}
|
|
return(max_index+1);
|
|
}
|