721 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			721 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZDRVHEX
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
 | 
						|
*                          A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
 | 
						|
*                          NOUT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            TSTERR
 | 
						|
*       INTEGER            NMAX, NN, NOUT, NRHS
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            IWORK( * ), NVAL( * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
 | 
						|
*      $                   WORK( * ), X( * ), XACT( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZDRVHE tests the driver routines ZHESV, -SVX, and -SVXX.
 | 
						|
*>
 | 
						|
*> Note that this file is used only when the XBLAS are available,
 | 
						|
*> otherwise zdrvhe.f defines this subroutine.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          The matrix types to be used for testing.  Matrices of type j
 | 
						|
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | 
						|
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER
 | 
						|
*>          The number of values of N contained in the vector NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NN)
 | 
						|
*>          The values of the matrix dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand side vectors to be generated for
 | 
						|
*>          each linear system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is DOUBLE PRECISION
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSTERR
 | 
						|
*> \verbatim
 | 
						|
*>          TSTERR is LOGICAL
 | 
						|
*>          Flag that indicates whether error exits are to be tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NMAX
 | 
						|
*> \verbatim
 | 
						|
*>          NMAX is INTEGER
 | 
						|
*>          The maximum value permitted for N, used in dimensioning the
 | 
						|
*>          work arrays.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (NMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AINV
 | 
						|
*> \verbatim
 | 
						|
*>          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension
 | 
						|
*>                      (NMAX*max(2,NRHS))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (2*NMAX+2*NRHS)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The unit number for output.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
 | 
						|
     $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
 | 
						|
     $                   NOUT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            TSTERR
 | 
						|
      INTEGER            NMAX, NN, NOUT, NRHS
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            IWORK( * ), NVAL( * )
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
 | 
						|
     $                   WORK( * ), X( * ), XACT( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
      INTEGER            NTYPES, NTESTS
 | 
						|
      PARAMETER          ( NTYPES = 10, NTESTS = 6 )
 | 
						|
      INTEGER            NFACT
 | 
						|
      PARAMETER          ( NFACT = 2 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ZEROT
 | 
						|
      CHARACTER          DIST, EQUED, FACT, TYPE, UPLO, XTYPE
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
 | 
						|
     $                   IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
 | 
						|
     $                   NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT,
 | 
						|
     $                   N_ERR_BNDS
 | 
						|
      DOUBLE PRECISION   AINVNM, ANORM, CNDNUM, RCOND, RCONDC,
 | 
						|
     $                   RPVGRW_SVXX
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      CHARACTER          FACTS( NFACT ), UPLOS( 2 )
 | 
						|
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | 
						|
      DOUBLE PRECISION   RESULT( NTESTS ), BERR( NRHS ),
 | 
						|
     $                   ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DGET06, ZLANHE
 | 
						|
      EXTERNAL           DGET06, ZLANHE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
 | 
						|
     $                   ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI2, ZLACPY,
 | 
						|
     $                   ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02,
 | 
						|
     $                   ZPOT05, ZHESVXX
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, NUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DCMPLX, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
 | 
						|
      DATA               UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize constants and the random number seed.
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Z'
 | 
						|
      PATH( 2: 3 ) = 'HE'
 | 
						|
      NRUN = 0
 | 
						|
      NFAIL = 0
 | 
						|
      NERRS = 0
 | 
						|
      DO 10 I = 1, 4
 | 
						|
         ISEED( I ) = ISEEDY( I )
 | 
						|
   10 CONTINUE
 | 
						|
      LWORK = MAX( 2*NMAX, NMAX*NRHS )
 | 
						|
*
 | 
						|
*     Test the error exits
 | 
						|
*
 | 
						|
      IF( TSTERR )
 | 
						|
     $   CALL ZERRVX( PATH, NOUT )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
*     Set the block size and minimum block size for testing.
 | 
						|
*
 | 
						|
      NB = 1
 | 
						|
      NBMIN = 2
 | 
						|
      CALL XLAENV( 1, NB )
 | 
						|
      CALL XLAENV( 2, NBMIN )
 | 
						|
*
 | 
						|
*     Do for each value of N in NVAL
 | 
						|
*
 | 
						|
      DO 180 IN = 1, NN
 | 
						|
         N = NVAL( IN )
 | 
						|
         LDA = MAX( N, 1 )
 | 
						|
         XTYPE = 'N'
 | 
						|
         NIMAT = NTYPES
 | 
						|
         IF( N.LE.0 )
 | 
						|
     $      NIMAT = 1
 | 
						|
*
 | 
						|
         DO 170 IMAT = 1, NIMAT
 | 
						|
*
 | 
						|
*           Do the tests only if DOTYPE( IMAT ) is true.
 | 
						|
*
 | 
						|
            IF( .NOT.DOTYPE( IMAT ) )
 | 
						|
     $         GO TO 170
 | 
						|
*
 | 
						|
*           Skip types 3, 4, 5, or 6 if the matrix size is too small.
 | 
						|
*
 | 
						|
            ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
 | 
						|
            IF( ZEROT .AND. N.LT.IMAT-2 )
 | 
						|
     $         GO TO 170
 | 
						|
*
 | 
						|
*           Do first for UPLO = 'U', then for UPLO = 'L'
 | 
						|
*
 | 
						|
            DO 160 IUPLO = 1, 2
 | 
						|
               UPLO = UPLOS( IUPLO )
 | 
						|
*
 | 
						|
*              Set up parameters with ZLATB4 and generate a test matrix
 | 
						|
*              with ZLATMS.
 | 
						|
*
 | 
						|
               CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | 
						|
     $                      CNDNUM, DIST )
 | 
						|
*
 | 
						|
               SRNAMT = 'ZLATMS'
 | 
						|
               CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
 | 
						|
     $                      CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
 | 
						|
     $                      INFO )
 | 
						|
*
 | 
						|
*              Check error code from ZLATMS.
 | 
						|
*
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
 | 
						|
     $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
                  GO TO 160
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              For types 3-6, zero one or more rows and columns of the
 | 
						|
*              matrix to test that INFO is returned correctly.
 | 
						|
*
 | 
						|
               IF( ZEROT ) THEN
 | 
						|
                  IF( IMAT.EQ.3 ) THEN
 | 
						|
                     IZERO = 1
 | 
						|
                  ELSE IF( IMAT.EQ.4 ) THEN
 | 
						|
                     IZERO = N
 | 
						|
                  ELSE
 | 
						|
                     IZERO = N / 2 + 1
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( IMAT.LT.6 ) THEN
 | 
						|
*
 | 
						|
*                    Set row and column IZERO to zero.
 | 
						|
*
 | 
						|
                     IF( IUPLO.EQ.1 ) THEN
 | 
						|
                        IOFF = ( IZERO-1 )*LDA
 | 
						|
                        DO 20 I = 1, IZERO - 1
 | 
						|
                           A( IOFF+I ) = ZERO
 | 
						|
   20                   CONTINUE
 | 
						|
                        IOFF = IOFF + IZERO
 | 
						|
                        DO 30 I = IZERO, N
 | 
						|
                           A( IOFF ) = ZERO
 | 
						|
                           IOFF = IOFF + LDA
 | 
						|
   30                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        IOFF = IZERO
 | 
						|
                        DO 40 I = 1, IZERO - 1
 | 
						|
                           A( IOFF ) = ZERO
 | 
						|
                           IOFF = IOFF + LDA
 | 
						|
   40                   CONTINUE
 | 
						|
                        IOFF = IOFF - IZERO
 | 
						|
                        DO 50 I = IZERO, N
 | 
						|
                           A( IOFF+I ) = ZERO
 | 
						|
   50                   CONTINUE
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     IOFF = 0
 | 
						|
                     IF( IUPLO.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                       Set the first IZERO rows and columns to zero.
 | 
						|
*
 | 
						|
                        DO 70 J = 1, N
 | 
						|
                           I2 = MIN( J, IZERO )
 | 
						|
                           DO 60 I = 1, I2
 | 
						|
                              A( IOFF+I ) = ZERO
 | 
						|
   60                      CONTINUE
 | 
						|
                           IOFF = IOFF + LDA
 | 
						|
   70                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
*
 | 
						|
*                       Set the last IZERO rows and columns to zero.
 | 
						|
*
 | 
						|
                        DO 90 J = 1, N
 | 
						|
                           I1 = MAX( J, IZERO )
 | 
						|
                           DO 80 I = I1, N
 | 
						|
                              A( IOFF+I ) = ZERO
 | 
						|
   80                      CONTINUE
 | 
						|
                           IOFF = IOFF + LDA
 | 
						|
   90                   CONTINUE
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  IZERO = 0
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Set the imaginary part of the diagonals.
 | 
						|
*
 | 
						|
               CALL ZLAIPD( N, A, LDA+1, 0 )
 | 
						|
*
 | 
						|
               DO 150 IFACT = 1, NFACT
 | 
						|
*
 | 
						|
*                 Do first for FACT = 'F', then for other values.
 | 
						|
*
 | 
						|
                  FACT = FACTS( IFACT )
 | 
						|
*
 | 
						|
*                 Compute the condition number for comparison with
 | 
						|
*                 the value returned by ZHESVX.
 | 
						|
*
 | 
						|
                  IF( ZEROT ) THEN
 | 
						|
                     IF( IFACT.EQ.1 )
 | 
						|
     $                  GO TO 150
 | 
						|
                     RCONDC = ZERO
 | 
						|
*
 | 
						|
                  ELSE IF( IFACT.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                    Compute the 1-norm of A.
 | 
						|
*
 | 
						|
                     ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
 | 
						|
*
 | 
						|
*                    Factor the matrix A.
 | 
						|
*
 | 
						|
                     CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
 | 
						|
                     CALL ZHETRF( UPLO, N, AFAC, LDA, IWORK, WORK,
 | 
						|
     $                            LWORK, INFO )
 | 
						|
*
 | 
						|
*                    Compute inv(A) and take its norm.
 | 
						|
*
 | 
						|
                     CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
 | 
						|
                     LWORK = (N+NB+1)*(NB+3)
 | 
						|
                     CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
 | 
						|
     $                            LWORK, INFO )
 | 
						|
                     AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK )
 | 
						|
*
 | 
						|
*                    Compute the 1-norm condition number of A.
 | 
						|
*
 | 
						|
                     IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
                        RCONDC = ONE
 | 
						|
                     ELSE
 | 
						|
                        RCONDC = ( ONE / ANORM ) / AINVNM
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Form an exact solution and set the right hand side.
 | 
						|
*
 | 
						|
                  SRNAMT = 'ZLARHS'
 | 
						|
                  CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
 | 
						|
     $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
 | 
						|
     $                         INFO )
 | 
						|
                  XTYPE = 'C'
 | 
						|
*
 | 
						|
*                 --- Test ZHESV  ---
 | 
						|
*
 | 
						|
                  IF( IFACT.EQ.2 ) THEN
 | 
						|
                     CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
 | 
						|
                     CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | 
						|
*
 | 
						|
*                    Factor the matrix and solve the system using ZHESV.
 | 
						|
*
 | 
						|
                     SRNAMT = 'ZHESV '
 | 
						|
                     CALL ZHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
 | 
						|
     $                           LDA, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*                    Adjust the expected value of INFO to account for
 | 
						|
*                    pivoting.
 | 
						|
*
 | 
						|
                     K = IZERO
 | 
						|
                     IF( K.GT.0 ) THEN
 | 
						|
  100                   CONTINUE
 | 
						|
                        IF( IWORK( K ).LT.0 ) THEN
 | 
						|
                           IF( IWORK( K ).NE.-K ) THEN
 | 
						|
                              K = -IWORK( K )
 | 
						|
                              GO TO 100
 | 
						|
                           END IF
 | 
						|
                        ELSE IF( IWORK( K ).NE.K ) THEN
 | 
						|
                           K = IWORK( K )
 | 
						|
                           GO TO 100
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Check error code from ZHESV .
 | 
						|
*
 | 
						|
                     IF( INFO.NE.K ) THEN
 | 
						|
                        CALL ALAERH( PATH, 'ZHESV ', INFO, K, UPLO, N,
 | 
						|
     $                               N, -1, -1, NRHS, IMAT, NFAIL,
 | 
						|
     $                               NERRS, NOUT )
 | 
						|
                        GO TO 120
 | 
						|
                     ELSE IF( INFO.NE.0 ) THEN
 | 
						|
                        GO TO 120
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Reconstruct matrix from factors and compute
 | 
						|
*                    residual.
 | 
						|
*
 | 
						|
                     CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
 | 
						|
     $                            AINV, LDA, RWORK, RESULT( 1 ) )
 | 
						|
*
 | 
						|
*                    Compute residual of the computed solution.
 | 
						|
*
 | 
						|
                     CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                     CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
 | 
						|
     $                            LDA, RWORK, RESULT( 2 ) )
 | 
						|
*
 | 
						|
*                    Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                     CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                            RESULT( 3 ) )
 | 
						|
                     NT = 3
 | 
						|
*
 | 
						|
*                    Print information about the tests that did not pass
 | 
						|
*                    the threshold.
 | 
						|
*
 | 
						|
                     DO 110 K = 1, NT
 | 
						|
                        IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                           IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                        CALL ALADHD( NOUT, PATH )
 | 
						|
                           WRITE( NOUT, FMT = 9999 )'ZHESV ', UPLO, N,
 | 
						|
     $                        IMAT, K, RESULT( K )
 | 
						|
                           NFAIL = NFAIL + 1
 | 
						|
                        END IF
 | 
						|
  110                CONTINUE
 | 
						|
                     NRUN = NRUN + NT
 | 
						|
  120                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 --- Test ZHESVX ---
 | 
						|
*
 | 
						|
                  IF( IFACT.EQ.2 )
 | 
						|
     $               CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ),
 | 
						|
     $                            DCMPLX( ZERO ), AFAC, LDA )
 | 
						|
                  CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
 | 
						|
     $                         DCMPLX( ZERO ), X, LDA )
 | 
						|
*
 | 
						|
*                 Solve the system and compute the condition number and
 | 
						|
*                 error bounds using ZHESVX.
 | 
						|
*
 | 
						|
                  SRNAMT = 'ZHESVX'
 | 
						|
                  CALL ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
 | 
						|
     $                         IWORK, B, LDA, X, LDA, RCOND, RWORK,
 | 
						|
     $                         RWORK( NRHS+1 ), WORK, LWORK,
 | 
						|
     $                         RWORK( 2*NRHS+1 ), INFO )
 | 
						|
*
 | 
						|
*                 Adjust the expected value of INFO to account for
 | 
						|
*                 pivoting.
 | 
						|
*
 | 
						|
                  K = IZERO
 | 
						|
                  IF( K.GT.0 ) THEN
 | 
						|
  130                CONTINUE
 | 
						|
                     IF( IWORK( K ).LT.0 ) THEN
 | 
						|
                        IF( IWORK( K ).NE.-K ) THEN
 | 
						|
                           K = -IWORK( K )
 | 
						|
                           GO TO 130
 | 
						|
                        END IF
 | 
						|
                     ELSE IF( IWORK( K ).NE.K ) THEN
 | 
						|
                        K = IWORK( K )
 | 
						|
                        GO TO 130
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Check the error code from ZHESVX.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.K ) THEN
 | 
						|
                     CALL ALAERH( PATH, 'ZHESVX', INFO, K, FACT // UPLO,
 | 
						|
     $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
 | 
						|
     $                            NERRS, NOUT )
 | 
						|
                     GO TO 150
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( INFO.EQ.0 ) THEN
 | 
						|
                     IF( IFACT.GE.2 ) THEN
 | 
						|
*
 | 
						|
*                       Reconstruct matrix from factors and compute
 | 
						|
*                       residual.
 | 
						|
*
 | 
						|
                        CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
 | 
						|
     $                               AINV, LDA, RWORK( 2*NRHS+1 ),
 | 
						|
     $                               RESULT( 1 ) )
 | 
						|
                        K1 = 1
 | 
						|
                     ELSE
 | 
						|
                        K1 = 2
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Compute residual of the computed solution.
 | 
						|
*
 | 
						|
                     CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                     CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
 | 
						|
     $                            LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
 | 
						|
*
 | 
						|
*                    Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                     CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                            RESULT( 3 ) )
 | 
						|
*
 | 
						|
*                    Check the error bounds from iterative refinement.
 | 
						|
*
 | 
						|
                     CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
 | 
						|
     $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
 | 
						|
     $                            RESULT( 4 ) )
 | 
						|
                  ELSE
 | 
						|
                     K1 = 6
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Compare RCOND from ZHESVX with the computed value
 | 
						|
*                 in RCONDC.
 | 
						|
*
 | 
						|
                  RESULT( 6 ) = DGET06( RCOND, RCONDC )
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 140 K = K1, 6
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                     CALL ALADHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9998 )'ZHESVX', FACT, UPLO,
 | 
						|
     $                     N, IMAT, K, RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
  140             CONTINUE
 | 
						|
                  NRUN = NRUN + 7 - K1
 | 
						|
*
 | 
						|
*                 --- Test ZHESVXX ---
 | 
						|
*
 | 
						|
*                 Restore the matrices A and B.
 | 
						|
*
 | 
						|
                  IF( IFACT.EQ.2 )
 | 
						|
     $               CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ),
 | 
						|
     $                 DCMPLX( ZERO ), AFAC, LDA )
 | 
						|
                  CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
 | 
						|
     $                 DCMPLX( ZERO ), X, LDA )
 | 
						|
*
 | 
						|
*                 Solve the system and compute the condition number
 | 
						|
*                 and error bounds using ZHESVXX.
 | 
						|
*
 | 
						|
                  SRNAMT = 'ZHESVXX'
 | 
						|
                  N_ERR_BNDS = 3
 | 
						|
                  EQUED = 'N'
 | 
						|
                  CALL ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC,
 | 
						|
     $                 LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X,
 | 
						|
     $                 LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
 | 
						|
     $                 ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
 | 
						|
     $                 RWORK(2*NRHS+1), INFO )
 | 
						|
*
 | 
						|
*                 Adjust the expected value of INFO to account for
 | 
						|
*                 pivoting.
 | 
						|
*
 | 
						|
                  K = IZERO
 | 
						|
                  IF( K.GT.0 ) THEN
 | 
						|
 135                 CONTINUE
 | 
						|
                     IF( IWORK( K ).LT.0 ) THEN
 | 
						|
                        IF( IWORK( K ).NE.-K ) THEN
 | 
						|
                           K = -IWORK( K )
 | 
						|
                           GO TO 135
 | 
						|
                        END IF
 | 
						|
                     ELSE IF( IWORK( K ).NE.K ) THEN
 | 
						|
                        K = IWORK( K )
 | 
						|
                        GO TO 135
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Check the error code from ZHESVXX.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.K .AND. INFO.LE.N) THEN
 | 
						|
                     CALL ALAERH( PATH, 'ZHESVXX', INFO, K,
 | 
						|
     $                    FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL,
 | 
						|
     $                    NERRS, NOUT )
 | 
						|
                     GO TO 150
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( INFO.EQ.0 ) THEN
 | 
						|
                     IF( IFACT.GE.2 ) THEN
 | 
						|
*
 | 
						|
*                 Reconstruct matrix from factors and compute
 | 
						|
*                 residual.
 | 
						|
*
 | 
						|
                        CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
 | 
						|
     $                       AINV, LDA, RWORK(2*NRHS+1),
 | 
						|
     $                       RESULT( 1 ) )
 | 
						|
                        K1 = 1
 | 
						|
                     ELSE
 | 
						|
                        K1 = 2
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                 Compute residual of the computed solution.
 | 
						|
*
 | 
						|
                     CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                     CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
 | 
						|
     $                    LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
 | 
						|
                     RESULT( 2 ) = 0.0
 | 
						|
*
 | 
						|
*                 Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                     CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                    RESULT( 3 ) )
 | 
						|
*
 | 
						|
*                 Check the error bounds from iterative refinement.
 | 
						|
*
 | 
						|
                     CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
 | 
						|
     $                    XACT, LDA, RWORK, RWORK( NRHS+1 ),
 | 
						|
     $                    RESULT( 4 ) )
 | 
						|
                  ELSE
 | 
						|
                     K1 = 6
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Compare RCOND from ZHESVXX with the computed value
 | 
						|
*                 in RCONDC.
 | 
						|
*
 | 
						|
                  RESULT( 6 ) = DGET06( RCOND, RCONDC )
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 85 K = K1, 6
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                       CALL ALADHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9998 )'ZHESVXX',
 | 
						|
     $                       FACT, UPLO, N, IMAT, K,
 | 
						|
     $                       RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
 85               CONTINUE
 | 
						|
                  NRUN = NRUN + 7 - K1
 | 
						|
*
 | 
						|
  150          CONTINUE
 | 
						|
*
 | 
						|
  160       CONTINUE
 | 
						|
  170    CONTINUE
 | 
						|
  180 CONTINUE
 | 
						|
*
 | 
						|
*     Print a summary of the results.
 | 
						|
*
 | 
						|
      CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | 
						|
*
 | 
						|
 | 
						|
*     Test Error Bounds from ZHESVXX
 | 
						|
 | 
						|
      CALL ZEBCHVXX(THRESH, PATH)
 | 
						|
 | 
						|
 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
 | 
						|
     $      ', test ', I2, ', ratio =', G12.5 )
 | 
						|
 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
 | 
						|
     $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZDRVHEX
 | 
						|
*
 | 
						|
      END
 |