857 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CCHKHE_RK
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CCHKHE_RK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
 | 
						|
*                             THRESH, TSTERR, NMAX, A, AFAC, E, AINV, B,
 | 
						|
*                             X, XACT, WORK, RWORK, IWORK, NOUT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            TSTERR
 | 
						|
*       INTEGER            NMAX, NN, NNB, NNS, NOUT
 | 
						|
*       REAL               THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
 | 
						|
*      $                   WORK( * ), X( * ), XACT( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CCHKHE_RK tests CHETRF_RK, -TRI_3, -TRS_3,
 | 
						|
*> and -CON_3.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          The matrix types to be used for testing.  Matrices of type j
 | 
						|
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | 
						|
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER
 | 
						|
*>          The number of values of N contained in the vector NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NN)
 | 
						|
*>          The values of the matrix dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NNB
 | 
						|
*> \verbatim
 | 
						|
*>          NNB is INTEGER
 | 
						|
*>          The number of values of NB contained in the vector NBVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NBVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NBVAL is INTEGER array, dimension (NNB)
 | 
						|
*>          The values of the blocksize NB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NNS
 | 
						|
*> \verbatim
 | 
						|
*>          NNS is INTEGER
 | 
						|
*>          The number of values of NRHS contained in the vector NSVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NSVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NSVAL is INTEGER array, dimension (NNS)
 | 
						|
*>          The values of the number of right hand sides NRHS.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is REAL
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSTERR
 | 
						|
*> \verbatim
 | 
						|
*>          TSTERR is LOGICAL
 | 
						|
*>          Flag that indicates whether error exits are to be tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NMAX
 | 
						|
*> \verbatim
 | 
						|
*>          NMAX is INTEGER
 | 
						|
*>          The maximum value permitted for N, used in dimensioning the
 | 
						|
*>          work arrays.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (NMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX array, dimension (NMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AINV
 | 
						|
*> \verbatim
 | 
						|
*>          AINV is COMPLEX array, dimension (NMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (NMAX*NSMAX)
 | 
						|
*>          where NSMAX is the largest entry in NSVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (NMAX*NSMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is COMPLEX array, dimension (NMAX*NSMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (max(NMAX,2*NSMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (2*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The unit number for output.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CCHKHE_RK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
 | 
						|
     $                      THRESH, TSTERR, NMAX, A, AFAC, E, AINV, B,
 | 
						|
     $                      X, XACT, WORK, RWORK, IWORK, NOUT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            TSTERR
 | 
						|
      INTEGER            NMAX, NN, NNB, NNS, NOUT
 | 
						|
      REAL               THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
 | 
						|
     $                   WORK( * ), X( * ), XACT( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      REAL               ONEHALF
 | 
						|
      PARAMETER          ( ONEHALF = 0.5E+0 )
 | 
						|
      REAL               EIGHT, SEVTEN
 | 
						|
      PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
 | 
						|
      COMPLEX            CZERO
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
      INTEGER            NTYPES
 | 
						|
      PARAMETER          ( NTYPES = 10 )
 | 
						|
      INTEGER            NTESTS
 | 
						|
      PARAMETER          ( NTESTS = 7 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            TRFCON, ZEROT
 | 
						|
      CHARACTER          DIST, TYPE, UPLO, XTYPE
 | 
						|
      CHARACTER*3        PATH, MATPATH
 | 
						|
      INTEGER            I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
 | 
						|
     $                   ITEMP, ITEMP2, IUPLO, IZERO, J, K, KL, KU, LDA,
 | 
						|
     $                   LWORK, MODE, N, NB, NERRS, NFAIL, NIMAT, NRHS,
 | 
						|
     $                   NRUN, NT
 | 
						|
      REAL               ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
 | 
						|
     $                   SING_MIN, RCOND, RCONDC, STEMP
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      CHARACTER          UPLOS( 2 )
 | 
						|
      INTEGER            ISEED( 4 ), ISEEDY( 4 ), IDUMMY( 1 )
 | 
						|
      REAL               RESULT( NTESTS )
 | 
						|
      COMPLEX            BLOCK( 2, 2 ), CDUMMY( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANGE, CLANHE, SGET06
 | 
						|
      EXTERNAL           CLANGE, CLANHE, SGET06
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALAERH, ALAHD, ALASUM, CERRHE, CGESVD, CGET04,
 | 
						|
     $                   CLACPY, CLARHS, CLATB4, CLATMS, CPOT02, CPOT03,
 | 
						|
     $                   CHECON_3, CHET01_3, CHETRF_RK, CHETRI_3,
 | 
						|
     $                   CHETRS_3, XLAENV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, NUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
 | 
						|
      DATA               UPLOS / 'U', 'L' /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize constants and the random number seed.
 | 
						|
*
 | 
						|
      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | 
						|
*
 | 
						|
*     Test path
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Complex precision'
 | 
						|
      PATH( 2: 3 ) = 'HK'
 | 
						|
*
 | 
						|
*     Path to generate matrices
 | 
						|
*
 | 
						|
      MATPATH( 1: 1 ) = 'Complex precision'
 | 
						|
      MATPATH( 2: 3 ) = 'HE'
 | 
						|
*
 | 
						|
      NRUN = 0
 | 
						|
      NFAIL = 0
 | 
						|
      NERRS = 0
 | 
						|
      DO 10 I = 1, 4
 | 
						|
         ISEED( I ) = ISEEDY( I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Test the error exits
 | 
						|
*
 | 
						|
      IF( TSTERR )
 | 
						|
     $   CALL CERRHE( PATH, NOUT )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
*     Set the minimum block size for which the block routine should
 | 
						|
*     be used, which will be later returned by ILAENV
 | 
						|
*
 | 
						|
      CALL XLAENV( 2, 2 )
 | 
						|
*
 | 
						|
*     Do for each value of N in NVAL
 | 
						|
*
 | 
						|
      DO 270 IN = 1, NN
 | 
						|
         N = NVAL( IN )
 | 
						|
         LDA = MAX( N, 1 )
 | 
						|
         XTYPE = 'N'
 | 
						|
         NIMAT = NTYPES
 | 
						|
         IF( N.LE.0 )
 | 
						|
     $      NIMAT = 1
 | 
						|
*
 | 
						|
         IZERO = 0
 | 
						|
*
 | 
						|
*        Do for each value of matrix type IMAT
 | 
						|
*
 | 
						|
         DO 260 IMAT = 1, NIMAT
 | 
						|
*
 | 
						|
*           Do the tests only if DOTYPE( IMAT ) is true.
 | 
						|
*
 | 
						|
            IF( .NOT.DOTYPE( IMAT ) )
 | 
						|
     $         GO TO 260
 | 
						|
*
 | 
						|
*           Skip types 3, 4, 5, or 6 if the matrix size is too small.
 | 
						|
*
 | 
						|
            ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
 | 
						|
            IF( ZEROT .AND. N.LT.IMAT-2 )
 | 
						|
     $         GO TO 260
 | 
						|
*
 | 
						|
*           Do first for UPLO = 'U', then for UPLO = 'L'
 | 
						|
*
 | 
						|
            DO 250 IUPLO = 1, 2
 | 
						|
               UPLO = UPLOS( IUPLO )
 | 
						|
*
 | 
						|
*                 Begin generate the test matrix A.
 | 
						|
*
 | 
						|
*                 Set up parameters with CLATB4 for the matrix generator
 | 
						|
*                 based on the type of matrix to be generated.
 | 
						|
*
 | 
						|
                  CALL CLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, ANORM,
 | 
						|
     $                         MODE, CNDNUM, DIST )
 | 
						|
*
 | 
						|
*                 Generate a matrix with CLATMS.
 | 
						|
*
 | 
						|
                  SRNAMT = 'CLATMS'
 | 
						|
                  CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
 | 
						|
     $                         CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
 | 
						|
     $                         WORK, INFO )
 | 
						|
*
 | 
						|
*                 Check error code from CLATMS and handle error.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.0 ) THEN
 | 
						|
                     CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N,
 | 
						|
     $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
*                    Skip all tests for this generated matrix
 | 
						|
*
 | 
						|
                     GO TO 250
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 For matrix types 3-6, zero one or more rows and
 | 
						|
*                 columns of the matrix to test that INFO is returned
 | 
						|
*                 correctly.
 | 
						|
*
 | 
						|
                  IF( ZEROT ) THEN
 | 
						|
                     IF( IMAT.EQ.3 ) THEN
 | 
						|
                        IZERO = 1
 | 
						|
                     ELSE IF( IMAT.EQ.4 ) THEN
 | 
						|
                        IZERO = N
 | 
						|
                     ELSE
 | 
						|
                        IZERO = N / 2 + 1
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     IF( IMAT.LT.6 ) THEN
 | 
						|
*
 | 
						|
*                       Set row and column IZERO to zero.
 | 
						|
*
 | 
						|
                        IF( IUPLO.EQ.1 ) THEN
 | 
						|
                           IOFF = ( IZERO-1 )*LDA
 | 
						|
                           DO 20 I = 1, IZERO - 1
 | 
						|
                              A( IOFF+I ) = CZERO
 | 
						|
   20                      CONTINUE
 | 
						|
                           IOFF = IOFF + IZERO
 | 
						|
                           DO 30 I = IZERO, N
 | 
						|
                              A( IOFF ) = CZERO
 | 
						|
                              IOFF = IOFF + LDA
 | 
						|
   30                      CONTINUE
 | 
						|
                        ELSE
 | 
						|
                           IOFF = IZERO
 | 
						|
                           DO 40 I = 1, IZERO - 1
 | 
						|
                              A( IOFF ) = CZERO
 | 
						|
                              IOFF = IOFF + LDA
 | 
						|
   40                      CONTINUE
 | 
						|
                           IOFF = IOFF - IZERO
 | 
						|
                           DO 50 I = IZERO, N
 | 
						|
                              A( IOFF+I ) = CZERO
 | 
						|
   50                      CONTINUE
 | 
						|
                        END IF
 | 
						|
                     ELSE
 | 
						|
                        IF( IUPLO.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                          Set the first IZERO rows and columns to zero.
 | 
						|
*
 | 
						|
                           IOFF = 0
 | 
						|
                           DO 70 J = 1, N
 | 
						|
                              I2 = MIN( J, IZERO )
 | 
						|
                              DO 60 I = 1, I2
 | 
						|
                                 A( IOFF+I ) = CZERO
 | 
						|
   60                         CONTINUE
 | 
						|
                              IOFF = IOFF + LDA
 | 
						|
   70                      CONTINUE
 | 
						|
                        ELSE
 | 
						|
*
 | 
						|
*                          Set the last IZERO rows and columns to zero.
 | 
						|
*
 | 
						|
                           IOFF = 0
 | 
						|
                           DO 90 J = 1, N
 | 
						|
                              I1 = MAX( J, IZERO )
 | 
						|
                              DO 80 I = I1, N
 | 
						|
                                 A( IOFF+I ) = CZERO
 | 
						|
   80                         CONTINUE
 | 
						|
                              IOFF = IOFF + LDA
 | 
						|
   90                      CONTINUE
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     IZERO = 0
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 End generate the test matrix A.
 | 
						|
*
 | 
						|
*
 | 
						|
*              Do for each value of NB in NBVAL
 | 
						|
*
 | 
						|
               DO 240 INB = 1, NNB
 | 
						|
*
 | 
						|
*                 Set the optimal blocksize, which will be later
 | 
						|
*                 returned by ILAENV.
 | 
						|
*
 | 
						|
                  NB = NBVAL( INB )
 | 
						|
                  CALL XLAENV( 1, NB )
 | 
						|
*
 | 
						|
*                 Copy the test matrix A into matrix AFAC which
 | 
						|
*                 will be factorized in place. This is needed to
 | 
						|
*                 preserve the test matrix A for subsequent tests.
 | 
						|
*
 | 
						|
                  CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
 | 
						|
*
 | 
						|
*                 Compute the L*D*L**T or U*D*U**T factorization of the
 | 
						|
*                 matrix. IWORK stores details of the interchanges and
 | 
						|
*                 the block structure of D. AINV is a work array for
 | 
						|
*                 block factorization, LWORK is the length of AINV.
 | 
						|
*
 | 
						|
                  LWORK = MAX( 2, NB )*LDA
 | 
						|
                  SRNAMT = 'CHETRF_RK'
 | 
						|
                  CALL CHETRF_RK( UPLO, N, AFAC, LDA, E, IWORK, AINV,
 | 
						|
     $                            LWORK, INFO )
 | 
						|
*
 | 
						|
*                 Adjust the expected value of INFO to account for
 | 
						|
*                 pivoting.
 | 
						|
*
 | 
						|
                  K = IZERO
 | 
						|
                  IF( K.GT.0 ) THEN
 | 
						|
  100                CONTINUE
 | 
						|
                     IF( IWORK( K ).LT.0 ) THEN
 | 
						|
                        IF( IWORK( K ).NE.-K ) THEN
 | 
						|
                           K = -IWORK( K )
 | 
						|
                           GO TO 100
 | 
						|
                        END IF
 | 
						|
                     ELSE IF( IWORK( K ).NE.K ) THEN
 | 
						|
                        K = IWORK( K )
 | 
						|
                        GO TO 100
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Check error code from CHETRF_RK and handle error.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.K)
 | 
						|
     $               CALL ALAERH( PATH, 'CHETRF_RK', INFO, K,
 | 
						|
     $                            UPLO, N, N, -1, -1, NB, IMAT,
 | 
						|
     $                            NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
*                 Set the condition estimate flag if the INFO is not 0.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.0 ) THEN
 | 
						|
                     TRFCON = .TRUE.
 | 
						|
                  ELSE
 | 
						|
                     TRFCON = .FALSE.
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*+    TEST 1
 | 
						|
*                 Reconstruct matrix from factors and compute residual.
 | 
						|
*
 | 
						|
                  CALL CHET01_3( UPLO, N, A, LDA, AFAC, LDA, E, IWORK,
 | 
						|
     $                           AINV, LDA, RWORK, RESULT( 1 ) )
 | 
						|
                  NT = 1
 | 
						|
*
 | 
						|
*+    TEST 2
 | 
						|
*                 Form the inverse and compute the residual,
 | 
						|
*                 if the factorization was competed without INFO > 0
 | 
						|
*                 (i.e. there is no zero rows and columns).
 | 
						|
*                 Do it only for the first block size.
 | 
						|
*
 | 
						|
                  IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
 | 
						|
                     CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
 | 
						|
                     SRNAMT = 'CHETRI_3'
 | 
						|
*
 | 
						|
*                    Another reason that we need to compute the inverse
 | 
						|
*                    is that CPOT03 produces RCONDC which is used later
 | 
						|
*                    in TEST6 and TEST7.
 | 
						|
*
 | 
						|
                     LWORK = (N+NB+1)*(NB+3)
 | 
						|
                     CALL CHETRI_3( UPLO, N, AINV, LDA, E, IWORK, WORK,
 | 
						|
     $                              LWORK, INFO )
 | 
						|
*
 | 
						|
*                    Check error code from ZHETRI_3 and handle error.
 | 
						|
*
 | 
						|
                     IF( INFO.NE.0 )
 | 
						|
     $                  CALL ALAERH( PATH, 'CHETRI_3', INFO, -1,
 | 
						|
     $                               UPLO, N, N, -1, -1, -1, IMAT,
 | 
						|
     $                               NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
*                    Compute the residual for a Hermitian matrix times
 | 
						|
*                    its inverse.
 | 
						|
*
 | 
						|
                     CALL CPOT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA,
 | 
						|
     $                            RWORK, RCONDC, RESULT( 2 ) )
 | 
						|
                     NT = 2
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 110 K = 1, NT
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                     CALL ALAHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
 | 
						|
     $                     RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
  110             CONTINUE
 | 
						|
                  NRUN = NRUN + NT
 | 
						|
*
 | 
						|
*+    TEST 3
 | 
						|
*                 Compute largest element in U or L
 | 
						|
*
 | 
						|
                  RESULT( 3 ) = ZERO
 | 
						|
                  STEMP = ZERO
 | 
						|
*
 | 
						|
                  CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) ) /
 | 
						|
     $                    ( ONE-ALPHA )
 | 
						|
*
 | 
						|
                  IF( IUPLO.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Compute largest element in U
 | 
						|
*
 | 
						|
                     K = N
 | 
						|
  120                CONTINUE
 | 
						|
                     IF( K.LE.1 )
 | 
						|
     $                  GO TO 130
 | 
						|
*
 | 
						|
                     IF( IWORK( K ).GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                       Get max absolute value from elements
 | 
						|
*                       in column k in U
 | 
						|
*
 | 
						|
                        STEMP = CLANGE( 'M', K-1, 1,
 | 
						|
     $                          AFAC( ( K-1 )*LDA+1 ), LDA, RWORK )
 | 
						|
                     ELSE
 | 
						|
*
 | 
						|
*                       Get max absolute value from elements
 | 
						|
*                       in columns k and k-1 in U
 | 
						|
*
 | 
						|
                        STEMP = CLANGE( 'M', K-2, 2,
 | 
						|
     $                          AFAC( ( K-2 )*LDA+1 ), LDA, RWORK )
 | 
						|
                        K = K - 1
 | 
						|
*
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    STEMP should be bounded by CONST
 | 
						|
*
 | 
						|
                     STEMP = STEMP - CONST + THRESH
 | 
						|
                     IF( STEMP.GT.RESULT( 3 ) )
 | 
						|
     $                  RESULT( 3 ) = STEMP
 | 
						|
*
 | 
						|
                     K = K - 1
 | 
						|
*
 | 
						|
                     GO TO 120
 | 
						|
  130                CONTINUE
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                 Compute largest element in L
 | 
						|
*
 | 
						|
                     K = 1
 | 
						|
  140                CONTINUE
 | 
						|
                     IF( K.GE.N )
 | 
						|
     $                  GO TO 150
 | 
						|
*
 | 
						|
                     IF( IWORK( K ).GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                       Get max absolute value from elements
 | 
						|
*                       in column k in L
 | 
						|
*
 | 
						|
                        STEMP = CLANGE( 'M', N-K, 1,
 | 
						|
     $                          AFAC( ( K-1 )*LDA+K+1 ), LDA, RWORK )
 | 
						|
                     ELSE
 | 
						|
*
 | 
						|
*                       Get max absolute value from elements
 | 
						|
*                       in columns k and k+1 in L
 | 
						|
*
 | 
						|
                        STEMP = CLANGE( 'M', N-K-1, 2,
 | 
						|
     $                          AFAC( ( K-1 )*LDA+K+2 ), LDA, RWORK )
 | 
						|
                        K = K + 1
 | 
						|
*
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    STEMP should be bounded by CONST
 | 
						|
*
 | 
						|
                     STEMP = STEMP - CONST + THRESH
 | 
						|
                     IF( STEMP.GT.RESULT( 3 ) )
 | 
						|
     $                  RESULT( 3 ) = STEMP
 | 
						|
*
 | 
						|
                     K = K + 1
 | 
						|
*
 | 
						|
                     GO TO 140
 | 
						|
  150                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*
 | 
						|
*+    TEST 4
 | 
						|
*                 Compute largest 2-Norm (condition number)
 | 
						|
*                 of 2-by-2 diag blocks
 | 
						|
*
 | 
						|
                  RESULT( 4 ) = ZERO
 | 
						|
                  STEMP = ZERO
 | 
						|
*
 | 
						|
                  CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) )*
 | 
						|
     $                    ( ( ONE + ALPHA ) / ( ONE - ALPHA ) )
 | 
						|
                  CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
 | 
						|
*
 | 
						|
                  IF( IUPLO.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                    Loop backward for UPLO = 'U'
 | 
						|
*
 | 
						|
                     K = N
 | 
						|
  160                CONTINUE
 | 
						|
                     IF( K.LE.1 )
 | 
						|
     $                  GO TO 170
 | 
						|
*
 | 
						|
                     IF( IWORK( K ).LT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                       Get the two singular values
 | 
						|
*                       (real and non-negative) of a 2-by-2 block,
 | 
						|
*                       store them in RWORK array
 | 
						|
*
 | 
						|
                        BLOCK( 1, 1 ) = AFAC( ( K-2 )*LDA+K-1 )
 | 
						|
                        BLOCK( 1, 2 ) = E( K )
 | 
						|
                        BLOCK( 2, 1 ) = CONJG( BLOCK( 1, 2 ) )
 | 
						|
                        BLOCK( 2, 2 ) = AFAC( (K-1)*LDA+K )
 | 
						|
*
 | 
						|
                        CALL CGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK,
 | 
						|
     $                               CDUMMY, 1, CDUMMY, 1,
 | 
						|
     $                               WORK, 6, RWORK( 3 ), INFO )
 | 
						|
*
 | 
						|
*
 | 
						|
                        SING_MAX = RWORK( 1 )
 | 
						|
                        SING_MIN = RWORK( 2 )
 | 
						|
*
 | 
						|
                        STEMP = SING_MAX / SING_MIN
 | 
						|
*
 | 
						|
*                       STEMP should be bounded by CONST
 | 
						|
*
 | 
						|
                        STEMP = STEMP - CONST + THRESH
 | 
						|
                        IF( STEMP.GT.RESULT( 4 ) )
 | 
						|
     $                     RESULT( 4 ) = STEMP
 | 
						|
                        K = K - 1
 | 
						|
*
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     K = K - 1
 | 
						|
*
 | 
						|
                     GO TO 160
 | 
						|
  170                CONTINUE
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Loop forward for UPLO = 'L'
 | 
						|
*
 | 
						|
                     K = 1
 | 
						|
  180                CONTINUE
 | 
						|
                     IF( K.GE.N )
 | 
						|
     $                  GO TO 190
 | 
						|
*
 | 
						|
                     IF( IWORK( K ).LT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                       Get the two singular values
 | 
						|
*                       (real and non-negative) of a 2-by-2 block,
 | 
						|
*                       store them in RWORK array
 | 
						|
*
 | 
						|
                        BLOCK( 1, 1 ) = AFAC( ( K-1 )*LDA+K )
 | 
						|
                        BLOCK( 2, 1 ) = E( K )
 | 
						|
                        BLOCK( 1, 2 ) = CONJG( BLOCK( 2, 1 ) )
 | 
						|
                        BLOCK( 2, 2 ) = AFAC( K*LDA+K+1 )
 | 
						|
*
 | 
						|
                        CALL CGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK,
 | 
						|
     $                               CDUMMY, 1, CDUMMY, 1,
 | 
						|
     $                               WORK, 6, RWORK(3), INFO )
 | 
						|
*
 | 
						|
                        SING_MAX = RWORK( 1 )
 | 
						|
                        SING_MIN = RWORK( 2 )
 | 
						|
*
 | 
						|
                        STEMP = SING_MAX / SING_MIN
 | 
						|
*
 | 
						|
*                       STEMP should be bounded by CONST
 | 
						|
*
 | 
						|
                        STEMP = STEMP - CONST + THRESH
 | 
						|
                        IF( STEMP.GT.RESULT( 4 ) )
 | 
						|
     $                     RESULT( 4 ) = STEMP
 | 
						|
                        K = K + 1
 | 
						|
*
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     K = K + 1
 | 
						|
*
 | 
						|
                     GO TO 180
 | 
						|
  190                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 200 K = 3, 4
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                     CALL ALAHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
 | 
						|
     $                     RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
  200             CONTINUE
 | 
						|
                  NRUN = NRUN + 2
 | 
						|
*
 | 
						|
*                 Skip the other tests if this is not the first block
 | 
						|
*                 size.
 | 
						|
*
 | 
						|
                  IF( INB.GT.1 )
 | 
						|
     $               GO TO 240
 | 
						|
*
 | 
						|
*                 Do only the condition estimate if INFO is not 0.
 | 
						|
*
 | 
						|
                  IF( TRFCON ) THEN
 | 
						|
                     RCONDC = ZERO
 | 
						|
                     GO TO 230
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do for each value of NRHS in NSVAL.
 | 
						|
*
 | 
						|
                  DO 220 IRHS = 1, NNS
 | 
						|
                     NRHS = NSVAL( IRHS )
 | 
						|
*
 | 
						|
*                    Begin loop over NRHS values
 | 
						|
*
 | 
						|
*
 | 
						|
*+    TEST 5 ( Using TRS_3)
 | 
						|
*                 Solve and compute residual for  A * X = B.
 | 
						|
*
 | 
						|
*                    Choose a set of NRHS random solution vectors
 | 
						|
*                    stored in XACT and set up the right hand side B
 | 
						|
*
 | 
						|
                     SRNAMT = 'CLARHS'
 | 
						|
                     CALL CLARHS( MATPATH, XTYPE, UPLO, ' ', N, N,
 | 
						|
     $                            KL, KU, NRHS, A, LDA, XACT, LDA,
 | 
						|
     $                            B, LDA, ISEED, INFO )
 | 
						|
                     CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | 
						|
*
 | 
						|
                     SRNAMT = 'CHETRS_3'
 | 
						|
                     CALL CHETRS_3( UPLO, N, NRHS, AFAC, LDA, E, IWORK,
 | 
						|
     $                              X, LDA, INFO )
 | 
						|
*
 | 
						|
*                    Check error code from CHETRS_3 and handle error.
 | 
						|
*
 | 
						|
                     IF( INFO.NE.0 )
 | 
						|
     $                  CALL ALAERH( PATH, 'CHETRS_3', INFO, 0,
 | 
						|
     $                               UPLO, N, N, -1, -1, NRHS, IMAT,
 | 
						|
     $                               NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
                     CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
*
 | 
						|
*                    Compute the residual for the solution
 | 
						|
*
 | 
						|
                     CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
 | 
						|
     $                            LDA, RWORK, RESULT( 5 ) )
 | 
						|
*
 | 
						|
*+    TEST 6
 | 
						|
*                 Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                     CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                            RESULT( 6 ) )
 | 
						|
*
 | 
						|
*                    Print information about the tests that did not pass
 | 
						|
*                    the threshold.
 | 
						|
*
 | 
						|
                     DO 210 K = 5, 6
 | 
						|
                        IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                           IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                        CALL ALAHD( NOUT, PATH )
 | 
						|
                           WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS,
 | 
						|
     $                        IMAT, K, RESULT( K )
 | 
						|
                           NFAIL = NFAIL + 1
 | 
						|
                        END IF
 | 
						|
  210                CONTINUE
 | 
						|
                     NRUN = NRUN + 2
 | 
						|
*
 | 
						|
*                 End do for each value of NRHS in NSVAL.
 | 
						|
*
 | 
						|
  220             CONTINUE
 | 
						|
*
 | 
						|
*+    TEST 7
 | 
						|
*                 Get an estimate of RCOND = 1/CNDNUM.
 | 
						|
*
 | 
						|
  230             CONTINUE
 | 
						|
                  ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
 | 
						|
                  SRNAMT = 'CHECON_3'
 | 
						|
                  CALL CHECON_3( UPLO, N, AFAC, LDA, E, IWORK, ANORM,
 | 
						|
     $                           RCOND, WORK, INFO )
 | 
						|
*
 | 
						|
*                 Check error code from CHECON_3 and handle error.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.0 )
 | 
						|
     $               CALL ALAERH( PATH, 'CHECON_3', INFO, 0,
 | 
						|
     $                            UPLO, N, N, -1, -1, -1, IMAT,
 | 
						|
     $                            NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
*                 Compute the test ratio to compare values of RCOND
 | 
						|
*
 | 
						|
                  RESULT( 7 ) = SGET06( RCOND, RCONDC )
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  IF( RESULT( 7 ).GE.THRESH ) THEN
 | 
						|
                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                  CALL ALAHD( NOUT, PATH )
 | 
						|
                     WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 7,
 | 
						|
     $                  RESULT( 7 )
 | 
						|
                     NFAIL = NFAIL + 1
 | 
						|
                  END IF
 | 
						|
                  NRUN = NRUN + 1
 | 
						|
  240          CONTINUE
 | 
						|
*
 | 
						|
  250       CONTINUE
 | 
						|
  260    CONTINUE
 | 
						|
  270 CONTINUE
 | 
						|
*
 | 
						|
*     Print a summary of the results.
 | 
						|
*
 | 
						|
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | 
						|
*
 | 
						|
 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ',
 | 
						|
     $      I2, ', test ', I2, ', ratio =', G12.5 )
 | 
						|
 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
 | 
						|
     $      I2, ', test ', I2, ', ratio =', G12.5 )
 | 
						|
 9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
 | 
						|
     $      ', test ', I2, ', ratio =', G12.5 )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CCHKHE_RK
 | 
						|
*
 | 
						|
      END
 |