226 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPTTRF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZPTTRF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpttrf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpttrf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpttrf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPTTRF( N, D, E, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * )
 | 
						|
*       COMPLEX*16         E( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPTTRF computes the L*D*L**H factorization of a complex Hermitian
 | 
						|
*> positive definite tridiagonal matrix A.  The factorization may also
 | 
						|
*> be regarded as having the form A = U**H *D*U.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, the n diagonal elements of the tridiagonal matrix
 | 
						|
*>          A.  On exit, the n diagonal elements of the diagonal matrix
 | 
						|
*>          D from the L*D*L**H factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | 
						|
*>          matrix A.  On exit, the (n-1) subdiagonal elements of the
 | 
						|
*>          unit bidiagonal factor L from the L*D*L**H factorization of A.
 | 
						|
*>          E can also be regarded as the superdiagonal of the unit
 | 
						|
*>          bidiagonal factor U from the U**H *D*U factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = k, the leading principal minor of order k
 | 
						|
*>               is not positive; if k < N, the factorization could not
 | 
						|
*>               be completed, while if k = N, the factorization was
 | 
						|
*>               completed, but D(N) <= 0.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16PTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPTTRF( N, D, E, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * )
 | 
						|
      COMPLEX*16         E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, I4
 | 
						|
      DOUBLE PRECISION   EII, EIR, F, G
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DCMPLX, DIMAG, MOD
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
         CALL XERBLA( 'ZPTTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Compute the L*D*L**H (or U**H *D*U) factorization of A.
 | 
						|
*
 | 
						|
      I4 = MOD( N-1, 4 )
 | 
						|
      DO 10 I = 1, I4
 | 
						|
         IF( D( I ).LE.ZERO ) THEN
 | 
						|
            INFO = I
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
         EIR = DBLE( E( I ) )
 | 
						|
         EII = DIMAG( E( I ) )
 | 
						|
         F = EIR / D( I )
 | 
						|
         G = EII / D( I )
 | 
						|
         E( I ) = DCMPLX( F, G )
 | 
						|
         D( I+1 ) = D( I+1 ) - F*EIR - G*EII
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      DO 20 I = I4 + 1, N - 4, 4
 | 
						|
*
 | 
						|
*        Drop out of the loop if d(i) <= 0: the matrix is not positive
 | 
						|
*        definite.
 | 
						|
*
 | 
						|
         IF( D( I ).LE.ZERO ) THEN
 | 
						|
            INFO = I
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Solve for e(i) and d(i+1).
 | 
						|
*
 | 
						|
         EIR = DBLE( E( I ) )
 | 
						|
         EII = DIMAG( E( I ) )
 | 
						|
         F = EIR / D( I )
 | 
						|
         G = EII / D( I )
 | 
						|
         E( I ) = DCMPLX( F, G )
 | 
						|
         D( I+1 ) = D( I+1 ) - F*EIR - G*EII
 | 
						|
*
 | 
						|
         IF( D( I+1 ).LE.ZERO ) THEN
 | 
						|
            INFO = I + 1
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Solve for e(i+1) and d(i+2).
 | 
						|
*
 | 
						|
         EIR = DBLE( E( I+1 ) )
 | 
						|
         EII = DIMAG( E( I+1 ) )
 | 
						|
         F = EIR / D( I+1 )
 | 
						|
         G = EII / D( I+1 )
 | 
						|
         E( I+1 ) = DCMPLX( F, G )
 | 
						|
         D( I+2 ) = D( I+2 ) - F*EIR - G*EII
 | 
						|
*
 | 
						|
         IF( D( I+2 ).LE.ZERO ) THEN
 | 
						|
            INFO = I + 2
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Solve for e(i+2) and d(i+3).
 | 
						|
*
 | 
						|
         EIR = DBLE( E( I+2 ) )
 | 
						|
         EII = DIMAG( E( I+2 ) )
 | 
						|
         F = EIR / D( I+2 )
 | 
						|
         G = EII / D( I+2 )
 | 
						|
         E( I+2 ) = DCMPLX( F, G )
 | 
						|
         D( I+3 ) = D( I+3 ) - F*EIR - G*EII
 | 
						|
*
 | 
						|
         IF( D( I+3 ).LE.ZERO ) THEN
 | 
						|
            INFO = I + 3
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Solve for e(i+3) and d(i+4).
 | 
						|
*
 | 
						|
         EIR = DBLE( E( I+3 ) )
 | 
						|
         EII = DIMAG( E( I+3 ) )
 | 
						|
         F = EIR / D( I+3 )
 | 
						|
         G = EII / D( I+3 )
 | 
						|
         E( I+3 ) = DCMPLX( F, G )
 | 
						|
         D( I+4 ) = D( I+4 ) - F*EIR - G*EII
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Check d(n) for positive definiteness.
 | 
						|
*
 | 
						|
      IF( D( N ).LE.ZERO )
 | 
						|
     $   INFO = N
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPTTRF
 | 
						|
*
 | 
						|
      END
 |