432 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			432 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAED0 used by SSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAED0 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed0.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed0.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed0.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
 | 
						|
*                          WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAED0 computes all eigenvalues and corresponding eigenvectors of a
 | 
						|
*> symmetric tridiagonal matrix using the divide and conquer method.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ICOMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          ICOMPQ is INTEGER
 | 
						|
*>          = 0:  Compute eigenvalues only.
 | 
						|
*>          = 1:  Compute eigenvectors of original dense symmetric matrix
 | 
						|
*>                also.  On entry, Q contains the orthogonal matrix used
 | 
						|
*>                to reduce the original matrix to tridiagonal form.
 | 
						|
*>          = 2:  Compute eigenvalues and eigenvectors of tridiagonal
 | 
						|
*>                matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] QSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          QSIZ is INTEGER
 | 
						|
*>         The dimension of the orthogonal matrix used to reduce
 | 
						|
*>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>         On entry, the main diagonal of the tridiagonal matrix.
 | 
						|
*>         On exit, its eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>         The off-diagonal elements of the tridiagonal matrix.
 | 
						|
*>         On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDQ, N)
 | 
						|
*>         On entry, Q must contain an N-by-N orthogonal matrix.
 | 
						|
*>         If ICOMPQ = 0    Q is not referenced.
 | 
						|
*>         If ICOMPQ = 1    On entry, Q is a subset of the columns of the
 | 
						|
*>                          orthogonal matrix used to reduce the full
 | 
						|
*>                          matrix to tridiagonal form corresponding to
 | 
						|
*>                          the subset of the full matrix which is being
 | 
						|
*>                          decomposed at this time.
 | 
						|
*>         If ICOMPQ = 2    On entry, Q will be the identity matrix.
 | 
						|
*>                          On exit, Q contains the eigenvectors of the
 | 
						|
*>                          tridiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>         The leading dimension of the array Q.  If eigenvectors are
 | 
						|
*>         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] QSTORE
 | 
						|
*> \verbatim
 | 
						|
*>          QSTORE is REAL array, dimension (LDQS, N)
 | 
						|
*>         Referenced only when ICOMPQ = 1.  Used to store parts of
 | 
						|
*>         the eigenvector matrix when the updating matrix multiplies
 | 
						|
*>         take place.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQS
 | 
						|
*> \verbatim
 | 
						|
*>          LDQS is INTEGER
 | 
						|
*>         The leading dimension of the array QSTORE.  If ICOMPQ = 1,
 | 
						|
*>         then  LDQS >= max(1,N).  In any case,  LDQS >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array,
 | 
						|
*>         If ICOMPQ = 0 or 1, the dimension of WORK must be at least
 | 
						|
*>                     1 + 3*N + 2*N*lg N + 3*N**2
 | 
						|
*>                     ( lg( N ) = smallest integer k
 | 
						|
*>                                 such that 2^k >= N )
 | 
						|
*>         If ICOMPQ = 2, the dimension of WORK must be at least
 | 
						|
*>                     4*N + N**2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array,
 | 
						|
*>         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
 | 
						|
*>                        6 + 6*N + 5*N*lg N.
 | 
						|
*>                        ( lg( N ) = smallest integer k
 | 
						|
*>                                    such that 2^k >= N )
 | 
						|
*>         If ICOMPQ = 2, the dimension of IWORK must be at least
 | 
						|
*>                        3 + 5*N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  The algorithm failed to compute an eigenvalue while
 | 
						|
*>                working on the submatrix lying in rows and columns
 | 
						|
*>                INFO/(N+1) through mod(INFO,N+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Jeff Rutter, Computer Science Division, University of California
 | 
						|
*> at Berkeley, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
 | 
						|
     $                   WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.E0, ONE = 1.E0, TWO = 2.E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
 | 
						|
     $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
 | 
						|
     $                   J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1,
 | 
						|
     $                   SPM2, SUBMAT, SUBPBS, TLVLS
 | 
						|
      REAL               TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED1, SLAED7, SSTEQR,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, INT, LOG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX( 0, N ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLAED0', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      SMLSIZ = ILAENV( 9, 'SLAED0', ' ', 0, 0, 0, 0 )
 | 
						|
*
 | 
						|
*     Determine the size and placement of the submatrices, and save in
 | 
						|
*     the leading elements of IWORK.
 | 
						|
*
 | 
						|
      IWORK( 1 ) = N
 | 
						|
      SUBPBS = 1
 | 
						|
      TLVLS = 0
 | 
						|
   10 CONTINUE
 | 
						|
      IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
 | 
						|
         DO 20 J = SUBPBS, 1, -1
 | 
						|
            IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
 | 
						|
            IWORK( 2*J-1 ) = IWORK( J ) / 2
 | 
						|
   20    CONTINUE
 | 
						|
         TLVLS = TLVLS + 1
 | 
						|
         SUBPBS = 2*SUBPBS
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
      DO 30 J = 2, SUBPBS
 | 
						|
         IWORK( J ) = IWORK( J ) + IWORK( J-1 )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
 | 
						|
*     using rank-1 modifications (cuts).
 | 
						|
*
 | 
						|
      SPM1 = SUBPBS - 1
 | 
						|
      DO 40 I = 1, SPM1
 | 
						|
         SUBMAT = IWORK( I ) + 1
 | 
						|
         SMM1 = SUBMAT - 1
 | 
						|
         D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
 | 
						|
         D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      INDXQ = 4*N + 3
 | 
						|
      IF( ICOMPQ.NE.2 ) THEN
 | 
						|
*
 | 
						|
*        Set up workspaces for eigenvalues only/accumulate new vectors
 | 
						|
*        routine
 | 
						|
*
 | 
						|
         TEMP = LOG( REAL( N ) ) / LOG( TWO )
 | 
						|
         LGN = INT( TEMP )
 | 
						|
         IF( 2**LGN.LT.N )
 | 
						|
     $      LGN = LGN + 1
 | 
						|
         IF( 2**LGN.LT.N )
 | 
						|
     $      LGN = LGN + 1
 | 
						|
         IPRMPT = INDXQ + N + 1
 | 
						|
         IPERM = IPRMPT + N*LGN
 | 
						|
         IQPTR = IPERM + N*LGN
 | 
						|
         IGIVPT = IQPTR + N + 2
 | 
						|
         IGIVCL = IGIVPT + N*LGN
 | 
						|
*
 | 
						|
         IGIVNM = 1
 | 
						|
         IQ = IGIVNM + 2*N*LGN
 | 
						|
         IWREM = IQ + N**2 + 1
 | 
						|
*
 | 
						|
*        Initialize pointers
 | 
						|
*
 | 
						|
         DO 50 I = 0, SUBPBS
 | 
						|
            IWORK( IPRMPT+I ) = 1
 | 
						|
            IWORK( IGIVPT+I ) = 1
 | 
						|
   50    CONTINUE
 | 
						|
         IWORK( IQPTR ) = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve each submatrix eigenproblem at the bottom of the divide and
 | 
						|
*     conquer tree.
 | 
						|
*
 | 
						|
      CURR = 0
 | 
						|
      DO 70 I = 0, SPM1
 | 
						|
         IF( I.EQ.0 ) THEN
 | 
						|
            SUBMAT = 1
 | 
						|
            MATSIZ = IWORK( 1 )
 | 
						|
         ELSE
 | 
						|
            SUBMAT = IWORK( I ) + 1
 | 
						|
            MATSIZ = IWORK( I+1 ) - IWORK( I )
 | 
						|
         END IF
 | 
						|
         IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
            CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
 | 
						|
     $                   Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO )
 | 
						|
            IF( INFO.NE.0 )
 | 
						|
     $         GO TO 130
 | 
						|
         ELSE
 | 
						|
            CALL SSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
 | 
						|
     $                   WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK,
 | 
						|
     $                   INFO )
 | 
						|
            IF( INFO.NE.0 )
 | 
						|
     $         GO TO 130
 | 
						|
            IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
               CALL SGEMM( 'N', 'N', QSIZ, MATSIZ, MATSIZ, ONE,
 | 
						|
     $                     Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+
 | 
						|
     $                     CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ),
 | 
						|
     $                     LDQS )
 | 
						|
            END IF
 | 
						|
            IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
 | 
						|
            CURR = CURR + 1
 | 
						|
         END IF
 | 
						|
         K = 1
 | 
						|
         DO 60 J = SUBMAT, IWORK( I+1 )
 | 
						|
            IWORK( INDXQ+J ) = K
 | 
						|
            K = K + 1
 | 
						|
   60    CONTINUE
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     Successively merge eigensystems of adjacent submatrices
 | 
						|
*     into eigensystem for the corresponding larger matrix.
 | 
						|
*
 | 
						|
*     while ( SUBPBS > 1 )
 | 
						|
*
 | 
						|
      CURLVL = 1
 | 
						|
   80 CONTINUE
 | 
						|
      IF( SUBPBS.GT.1 ) THEN
 | 
						|
         SPM2 = SUBPBS - 2
 | 
						|
         DO 90 I = 0, SPM2, 2
 | 
						|
            IF( I.EQ.0 ) THEN
 | 
						|
               SUBMAT = 1
 | 
						|
               MATSIZ = IWORK( 2 )
 | 
						|
               MSD2 = IWORK( 1 )
 | 
						|
               CURPRB = 0
 | 
						|
            ELSE
 | 
						|
               SUBMAT = IWORK( I ) + 1
 | 
						|
               MATSIZ = IWORK( I+2 ) - IWORK( I )
 | 
						|
               MSD2 = MATSIZ / 2
 | 
						|
               CURPRB = CURPRB + 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
 | 
						|
*     into an eigensystem of size MATSIZ.
 | 
						|
*     SLAED1 is used only for the full eigensystem of a tridiagonal
 | 
						|
*     matrix.
 | 
						|
*     SLAED7 handles the cases in which eigenvalues only or eigenvalues
 | 
						|
*     and eigenvectors of a full symmetric matrix (which was reduced to
 | 
						|
*     tridiagonal form) are desired.
 | 
						|
*
 | 
						|
            IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
               CALL SLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ),
 | 
						|
     $                      LDQ, IWORK( INDXQ+SUBMAT ),
 | 
						|
     $                      E( SUBMAT+MSD2-1 ), MSD2, WORK,
 | 
						|
     $                      IWORK( SUBPBS+1 ), INFO )
 | 
						|
            ELSE
 | 
						|
               CALL SLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB,
 | 
						|
     $                      D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
 | 
						|
     $                      IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ),
 | 
						|
     $                      MSD2, WORK( IQ ), IWORK( IQPTR ),
 | 
						|
     $                      IWORK( IPRMPT ), IWORK( IPERM ),
 | 
						|
     $                      IWORK( IGIVPT ), IWORK( IGIVCL ),
 | 
						|
     $                      WORK( IGIVNM ), WORK( IWREM ),
 | 
						|
     $                      IWORK( SUBPBS+1 ), INFO )
 | 
						|
            END IF
 | 
						|
            IF( INFO.NE.0 )
 | 
						|
     $         GO TO 130
 | 
						|
            IWORK( I / 2+1 ) = IWORK( I+2 )
 | 
						|
   90    CONTINUE
 | 
						|
         SUBPBS = SUBPBS / 2
 | 
						|
         CURLVL = CURLVL + 1
 | 
						|
         GO TO 80
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     end while
 | 
						|
*
 | 
						|
*     Re-merge the eigenvalues/vectors which were deflated at the final
 | 
						|
*     merge step.
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         DO 100 I = 1, N
 | 
						|
            J = IWORK( INDXQ+I )
 | 
						|
            WORK( I ) = D( J )
 | 
						|
            CALL SCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
 | 
						|
  100    CONTINUE
 | 
						|
         CALL SCOPY( N, WORK, 1, D, 1 )
 | 
						|
      ELSE IF( ICOMPQ.EQ.2 ) THEN
 | 
						|
         DO 110 I = 1, N
 | 
						|
            J = IWORK( INDXQ+I )
 | 
						|
            WORK( I ) = D( J )
 | 
						|
            CALL SCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 )
 | 
						|
  110    CONTINUE
 | 
						|
         CALL SCOPY( N, WORK, 1, D, 1 )
 | 
						|
         CALL SLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ )
 | 
						|
      ELSE
 | 
						|
         DO 120 I = 1, N
 | 
						|
            J = IWORK( INDXQ+I )
 | 
						|
            WORK( I ) = D( J )
 | 
						|
  120    CONTINUE
 | 
						|
         CALL SCOPY( N, WORK, 1, D, 1 )
 | 
						|
      END IF
 | 
						|
      GO TO 140
 | 
						|
*
 | 
						|
  130 CONTINUE
 | 
						|
      INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
 | 
						|
*
 | 
						|
  140 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAED0
 | 
						|
*
 | 
						|
      END
 |