1373 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1373 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SHGEQZ
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SHGEQZ + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shgeqz.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shgeqz.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shgeqz.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
 | 
						|
*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
 | 
						|
*                          LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          COMPQ, COMPZ, JOB
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               ALPHAI( * ), ALPHAR( * ), BETA( * ),
 | 
						|
*      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
 | 
						|
*      $                   WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SHGEQZ computes the eigenvalues of a real matrix pair (H,T),
 | 
						|
*> where H is an upper Hessenberg matrix and T is upper triangular,
 | 
						|
*> using the double-shift QZ method.
 | 
						|
*> Matrix pairs of this type are produced by the reduction to
 | 
						|
*> generalized upper Hessenberg form of a real matrix pair (A,B):
 | 
						|
*>
 | 
						|
*>    A = Q1*H*Z1**T,  B = Q1*T*Z1**T,
 | 
						|
*>
 | 
						|
*> as computed by SGGHRD.
 | 
						|
*>
 | 
						|
*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
 | 
						|
*> also reduced to generalized Schur form,
 | 
						|
*>
 | 
						|
*>    H = Q*S*Z**T,  T = Q*P*Z**T,
 | 
						|
*>
 | 
						|
*> where Q and Z are orthogonal matrices, P is an upper triangular
 | 
						|
*> matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
 | 
						|
*> diagonal blocks.
 | 
						|
*>
 | 
						|
*> The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
 | 
						|
*> (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
 | 
						|
*> eigenvalues.
 | 
						|
*>
 | 
						|
*> Additionally, the 2-by-2 upper triangular diagonal blocks of P
 | 
						|
*> corresponding to 2-by-2 blocks of S are reduced to positive diagonal
 | 
						|
*> form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
 | 
						|
*> P(j,j) > 0, and P(j+1,j+1) > 0.
 | 
						|
*>
 | 
						|
*> Optionally, the orthogonal matrix Q from the generalized Schur
 | 
						|
*> factorization may be postmultiplied into an input matrix Q1, and the
 | 
						|
*> orthogonal matrix Z may be postmultiplied into an input matrix Z1.
 | 
						|
*> If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced
 | 
						|
*> the matrix pair (A,B) to generalized upper Hessenberg form, then the
 | 
						|
*> output matrices Q1*Q and Z1*Z are the orthogonal factors from the
 | 
						|
*> generalized Schur factorization of (A,B):
 | 
						|
*>
 | 
						|
*>    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T.
 | 
						|
*>
 | 
						|
*> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
 | 
						|
*> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
 | 
						|
*> complex and beta real.
 | 
						|
*> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
 | 
						|
*> generalized nonsymmetric eigenvalue problem (GNEP)
 | 
						|
*>    A*x = lambda*B*x
 | 
						|
*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
 | 
						|
*> alternate form of the GNEP
 | 
						|
*>    mu*A*y = B*y.
 | 
						|
*> Real eigenvalues can be read directly from the generalized Schur
 | 
						|
*> form:
 | 
						|
*>   alpha = S(i,i), beta = P(i,i).
 | 
						|
*>
 | 
						|
*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
 | 
						|
*>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
 | 
						|
*>      pp. 241--256.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          = 'E': Compute eigenvalues only;
 | 
						|
*>          = 'S': Compute eigenvalues and the Schur form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPQ is CHARACTER*1
 | 
						|
*>          = 'N': Left Schur vectors (Q) are not computed;
 | 
						|
*>          = 'I': Q is initialized to the unit matrix and the matrix Q
 | 
						|
*>                 of left Schur vectors of (H,T) is returned;
 | 
						|
*>          = 'V': Q must contain an orthogonal matrix Q1 on entry and
 | 
						|
*>                 the product Q1*Q is returned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COMPZ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPZ is CHARACTER*1
 | 
						|
*>          = 'N': Right Schur vectors (Z) are not computed;
 | 
						|
*>          = 'I': Z is initialized to the unit matrix and the matrix Z
 | 
						|
*>                 of right Schur vectors of (H,T) is returned;
 | 
						|
*>          = 'V': Z must contain an orthogonal matrix Z1 on entry and
 | 
						|
*>                 the product Z1*Z is returned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices H, T, Q, and Z.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>          ILO and IHI mark the rows and columns of H which are in
 | 
						|
*>          Hessenberg form.  It is assumed that A is already upper
 | 
						|
*>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
 | 
						|
*>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is REAL array, dimension (LDH, N)
 | 
						|
*>          On entry, the N-by-N upper Hessenberg matrix H.
 | 
						|
*>          On exit, if JOB = 'S', H contains the upper quasi-triangular
 | 
						|
*>          matrix S from the generalized Schur factorization.
 | 
						|
*>          If JOB = 'E', the diagonal blocks of H match those of S, but
 | 
						|
*>          the rest of H is unspecified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>          The leading dimension of the array H.  LDH >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is REAL array, dimension (LDT, N)
 | 
						|
*>          On entry, the N-by-N upper triangular matrix T.
 | 
						|
*>          On exit, if JOB = 'S', T contains the upper triangular
 | 
						|
*>          matrix P from the generalized Schur factorization;
 | 
						|
*>          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
 | 
						|
*>          are reduced to positive diagonal form, i.e., if H(j+1,j) is
 | 
						|
*>          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
 | 
						|
*>          T(j+1,j+1) > 0.
 | 
						|
*>          If JOB = 'E', the diagonal blocks of T match those of P, but
 | 
						|
*>          the rest of T is unspecified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is REAL array, dimension (N)
 | 
						|
*>          The real parts of each scalar alpha defining an eigenvalue
 | 
						|
*>          of GNEP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is REAL array, dimension (N)
 | 
						|
*>          The imaginary parts of each scalar alpha defining an
 | 
						|
*>          eigenvalue of GNEP.
 | 
						|
*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
 | 
						|
*>          positive, then the j-th and (j+1)-st eigenvalues are a
 | 
						|
*>          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL array, dimension (N)
 | 
						|
*>          The scalars beta that define the eigenvalues of GNEP.
 | 
						|
*>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 | 
						|
*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
 | 
						|
*>          pair (A,B), in one of the forms lambda = alpha/beta or
 | 
						|
*>          mu = beta/alpha.  Since either lambda or mu may overflow,
 | 
						|
*>          they should not, in general, be computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDQ, N)
 | 
						|
*>          On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in
 | 
						|
*>          the reduction of (A,B) to generalized Hessenberg form.
 | 
						|
*>          On exit, if COMPQ = 'I', the orthogonal matrix of left Schur
 | 
						|
*>          vectors of (H,T), and if COMPQ = 'V', the orthogonal matrix
 | 
						|
*>          of left Schur vectors of (A,B).
 | 
						|
*>          Not referenced if COMPQ = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= 1.
 | 
						|
*>          If COMPQ='V' or 'I', then LDQ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDZ, N)
 | 
						|
*>          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
 | 
						|
*>          the reduction of (A,B) to generalized Hessenberg form.
 | 
						|
*>          On exit, if COMPZ = 'I', the orthogonal matrix of
 | 
						|
*>          right Schur vectors of (H,T), and if COMPZ = 'V', the
 | 
						|
*>          orthogonal matrix of right Schur vectors of (A,B).
 | 
						|
*>          Not referenced if COMPZ = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1.
 | 
						|
*>          If COMPZ='V' or 'I', then LDZ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,N).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
 | 
						|
*>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
 | 
						|
*>                     BETA(i), i=INFO+1,...,N should be correct.
 | 
						|
*>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
 | 
						|
*>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
 | 
						|
*>                     BETA(i), i=INFO-N+1,...,N should be correct.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  Iteration counters:
 | 
						|
*>
 | 
						|
*>  JITER  -- counts iterations.
 | 
						|
*>  IITER  -- counts iterations run since ILAST was last
 | 
						|
*>            changed.  This is therefore reset only when a 1-by-1 or
 | 
						|
*>            2-by-2 block deflates off the bottom.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
 | 
						|
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
 | 
						|
     $                   LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          COMPQ, COMPZ, JOB
 | 
						|
      INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               ALPHAI( * ), ALPHAR( * ), BETA( * ),
 | 
						|
     $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
 | 
						|
     $                   WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
*    $                     SAFETY = 1.0E+0 )
 | 
						|
      REAL               HALF, ZERO, ONE, SAFETY
 | 
						|
      PARAMETER          ( HALF = 0.5E+0, ZERO = 0.0E+0, ONE = 1.0E+0,
 | 
						|
     $                   SAFETY = 1.0E+2 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,
 | 
						|
     $                   LQUERY
 | 
						|
      INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
 | 
						|
     $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
 | 
						|
     $                   JR, MAXIT
 | 
						|
      REAL               A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,
 | 
						|
     $                   AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,
 | 
						|
     $                   AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,
 | 
						|
     $                   B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,
 | 
						|
     $                   BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
 | 
						|
     $                   CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
 | 
						|
     $                   SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
 | 
						|
     $                   T2, T3, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1,
 | 
						|
     $                   U12, U12L, U2, ULP, VS, W11, W12, W21, W22,
 | 
						|
     $                   WABS, WI, WR, WR2
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               V( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH, SLANHS, SLAPY2, SLAPY3
 | 
						|
      EXTERNAL           LSAME, SLAMCH, SLANHS, SLAPY2, SLAPY3
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLAG2, SLARFG, SLARTG, SLASET, SLASV2, SROT,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode JOB, COMPQ, COMPZ
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'E' ) ) THEN
 | 
						|
         ILSCHR = .FALSE.
 | 
						|
         ISCHUR = 1
 | 
						|
      ELSE IF( LSAME( JOB, 'S' ) ) THEN
 | 
						|
         ILSCHR = .TRUE.
 | 
						|
         ISCHUR = 2
 | 
						|
      ELSE
 | 
						|
         ISCHUR = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( COMPQ, 'N' ) ) THEN
 | 
						|
         ILQ = .FALSE.
 | 
						|
         ICOMPQ = 1
 | 
						|
      ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
 | 
						|
         ILQ = .TRUE.
 | 
						|
         ICOMPQ = 2
 | 
						|
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
 | 
						|
         ILQ = .TRUE.
 | 
						|
         ICOMPQ = 3
 | 
						|
      ELSE
 | 
						|
         ICOMPQ = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( COMPZ, 'N' ) ) THEN
 | 
						|
         ILZ = .FALSE.
 | 
						|
         ICOMPZ = 1
 | 
						|
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | 
						|
         ILZ = .TRUE.
 | 
						|
         ICOMPZ = 2
 | 
						|
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | 
						|
         ILZ = .TRUE.
 | 
						|
         ICOMPZ = 3
 | 
						|
      ELSE
 | 
						|
         ICOMPZ = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check Argument Values
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      WORK( 1 ) = MAX( 1, N )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( ISCHUR.EQ.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ICOMPQ.EQ.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ICOMPZ.EQ.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( ILO.LT.1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDH.LT.N ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDT.LT.N ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
 | 
						|
         INFO = -15
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
         INFO = -17
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -19
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SHGEQZ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         WORK( 1 ) = REAL( 1 )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize Q and Z
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.3 )
 | 
						|
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
 | 
						|
      IF( ICOMPZ.EQ.3 )
 | 
						|
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
 | 
						|
*
 | 
						|
*     Machine Constants
 | 
						|
*
 | 
						|
      IN = IHI + 1 - ILO
 | 
						|
      SAFMIN = SLAMCH( 'S' )
 | 
						|
      SAFMAX = ONE / SAFMIN
 | 
						|
      ULP = SLAMCH( 'E' )*SLAMCH( 'B' )
 | 
						|
      ANORM = SLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK )
 | 
						|
      BNORM = SLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK )
 | 
						|
      ATOL = MAX( SAFMIN, ULP*ANORM )
 | 
						|
      BTOL = MAX( SAFMIN, ULP*BNORM )
 | 
						|
      ASCALE = ONE / MAX( SAFMIN, ANORM )
 | 
						|
      BSCALE = ONE / MAX( SAFMIN, BNORM )
 | 
						|
*
 | 
						|
*     Set Eigenvalues IHI+1:N
 | 
						|
*
 | 
						|
      DO 30 J = IHI + 1, N
 | 
						|
         IF( T( J, J ).LT.ZERO ) THEN
 | 
						|
            IF( ILSCHR ) THEN
 | 
						|
               DO 10 JR = 1, J
 | 
						|
                  H( JR, J ) = -H( JR, J )
 | 
						|
                  T( JR, J ) = -T( JR, J )
 | 
						|
   10          CONTINUE
 | 
						|
            ELSE
 | 
						|
               H( J, J ) = -H( J, J )
 | 
						|
               T( J, J ) = -T( J, J )
 | 
						|
            END IF
 | 
						|
            IF( ILZ ) THEN
 | 
						|
               DO 20 JR = 1, N
 | 
						|
                  Z( JR, J ) = -Z( JR, J )
 | 
						|
   20          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         ALPHAR( J ) = H( J, J )
 | 
						|
         ALPHAI( J ) = ZERO
 | 
						|
         BETA( J ) = T( J, J )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     If IHI < ILO, skip QZ steps
 | 
						|
*
 | 
						|
      IF( IHI.LT.ILO )
 | 
						|
     $   GO TO 380
 | 
						|
*
 | 
						|
*     MAIN QZ ITERATION LOOP
 | 
						|
*
 | 
						|
*     Initialize dynamic indices
 | 
						|
*
 | 
						|
*     Eigenvalues ILAST+1:N have been found.
 | 
						|
*        Column operations modify rows IFRSTM:whatever.
 | 
						|
*        Row operations modify columns whatever:ILASTM.
 | 
						|
*
 | 
						|
*     If only eigenvalues are being computed, then
 | 
						|
*        IFRSTM is the row of the last splitting row above row ILAST;
 | 
						|
*        this is always at least ILO.
 | 
						|
*     IITER counts iterations since the last eigenvalue was found,
 | 
						|
*        to tell when to use an extraordinary shift.
 | 
						|
*     MAXIT is the maximum number of QZ sweeps allowed.
 | 
						|
*
 | 
						|
      ILAST = IHI
 | 
						|
      IF( ILSCHR ) THEN
 | 
						|
         IFRSTM = 1
 | 
						|
         ILASTM = N
 | 
						|
      ELSE
 | 
						|
         IFRSTM = ILO
 | 
						|
         ILASTM = IHI
 | 
						|
      END IF
 | 
						|
      IITER = 0
 | 
						|
      ESHIFT = ZERO
 | 
						|
      MAXIT = 30*( IHI-ILO+1 )
 | 
						|
*
 | 
						|
      DO 360 JITER = 1, MAXIT
 | 
						|
*
 | 
						|
*        Split the matrix if possible.
 | 
						|
*
 | 
						|
*        Two tests:
 | 
						|
*           1: H(j,j-1)=0  or  j=ILO
 | 
						|
*           2: T(j,j)=0
 | 
						|
*
 | 
						|
         IF( ILAST.EQ.ILO ) THEN
 | 
						|
*
 | 
						|
*           Special case: j=ILAST
 | 
						|
*
 | 
						|
            GO TO 80
 | 
						|
         ELSE
 | 
						|
            IF( ABS( H( ILAST, ILAST-1 ) ).LE.MAX( SAFMIN, ULP*( 
 | 
						|
     $         ABS( H( ILAST, ILAST ) ) + ABS( H( ILAST-1, ILAST-1 ) ) 
 | 
						|
     $         ) ) ) THEN
 | 
						|
               H( ILAST, ILAST-1 ) = ZERO
 | 
						|
               GO TO 80
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
 | 
						|
            T( ILAST, ILAST ) = ZERO
 | 
						|
            GO TO 70
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        General case: j<ILAST
 | 
						|
*
 | 
						|
         DO 60 J = ILAST - 1, ILO, -1
 | 
						|
*
 | 
						|
*           Test 1: for H(j,j-1)=0 or j=ILO
 | 
						|
*
 | 
						|
            IF( J.EQ.ILO ) THEN
 | 
						|
               ILAZRO = .TRUE.
 | 
						|
            ELSE
 | 
						|
               IF( ABS( H( J, J-1 ) ).LE.MAX( SAFMIN, ULP*( 
 | 
						|
     $         ABS( H( J, J ) ) + ABS( H( J-1, J-1 ) ) 
 | 
						|
     $         ) ) ) THEN
 | 
						|
                  H( J, J-1 ) = ZERO
 | 
						|
                  ILAZRO = .TRUE.
 | 
						|
               ELSE
 | 
						|
                  ILAZRO = .FALSE.
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Test 2: for T(j,j)=0
 | 
						|
*
 | 
						|
            IF( ABS( T( J, J ) ).LT.BTOL ) THEN
 | 
						|
               T( J, J ) = ZERO
 | 
						|
*
 | 
						|
*              Test 1a: Check for 2 consecutive small subdiagonals in A
 | 
						|
*
 | 
						|
               ILAZR2 = .FALSE.
 | 
						|
               IF( .NOT.ILAZRO ) THEN
 | 
						|
                  TEMP = ABS( H( J, J-1 ) )
 | 
						|
                  TEMP2 = ABS( H( J, J ) )
 | 
						|
                  TEMPR = MAX( TEMP, TEMP2 )
 | 
						|
                  IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
 | 
						|
                     TEMP = TEMP / TEMPR
 | 
						|
                     TEMP2 = TEMP2 / TEMPR
 | 
						|
                  END IF
 | 
						|
                  IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2*
 | 
						|
     $                ( ASCALE*ATOL ) )ILAZR2 = .TRUE.
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              If both tests pass (1 & 2), i.e., the leading diagonal
 | 
						|
*              element of B in the block is zero, split a 1x1 block off
 | 
						|
*              at the top. (I.e., at the J-th row/column) The leading
 | 
						|
*              diagonal element of the remainder can also be zero, so
 | 
						|
*              this may have to be done repeatedly.
 | 
						|
*
 | 
						|
               IF( ILAZRO .OR. ILAZR2 ) THEN
 | 
						|
                  DO 40 JCH = J, ILAST - 1
 | 
						|
                     TEMP = H( JCH, JCH )
 | 
						|
                     CALL SLARTG( TEMP, H( JCH+1, JCH ), C, S,
 | 
						|
     $                            H( JCH, JCH ) )
 | 
						|
                     H( JCH+1, JCH ) = ZERO
 | 
						|
                     CALL SROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
 | 
						|
     $                          H( JCH+1, JCH+1 ), LDH, C, S )
 | 
						|
                     CALL SROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
 | 
						|
     $                          T( JCH+1, JCH+1 ), LDT, C, S )
 | 
						|
                     IF( ILQ )
 | 
						|
     $                  CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
 | 
						|
     $                             C, S )
 | 
						|
                     IF( ILAZR2 )
 | 
						|
     $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
 | 
						|
                     ILAZR2 = .FALSE.
 | 
						|
                     IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
 | 
						|
                        IF( JCH+1.GE.ILAST ) THEN
 | 
						|
                           GO TO 80
 | 
						|
                        ELSE
 | 
						|
                           IFIRST = JCH + 1
 | 
						|
                           GO TO 110
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
                     T( JCH+1, JCH+1 ) = ZERO
 | 
						|
   40             CONTINUE
 | 
						|
                  GO TO 70
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
 | 
						|
*                 Then process as in the case T(ILAST,ILAST)=0
 | 
						|
*
 | 
						|
                  DO 50 JCH = J, ILAST - 1
 | 
						|
                     TEMP = T( JCH, JCH+1 )
 | 
						|
                     CALL SLARTG( TEMP, T( JCH+1, JCH+1 ), C, S,
 | 
						|
     $                            T( JCH, JCH+1 ) )
 | 
						|
                     T( JCH+1, JCH+1 ) = ZERO
 | 
						|
                     IF( JCH.LT.ILASTM-1 )
 | 
						|
     $                  CALL SROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
 | 
						|
     $                             T( JCH+1, JCH+2 ), LDT, C, S )
 | 
						|
                     CALL SROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
 | 
						|
     $                          H( JCH+1, JCH-1 ), LDH, C, S )
 | 
						|
                     IF( ILQ )
 | 
						|
     $                  CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
 | 
						|
     $                             C, S )
 | 
						|
                     TEMP = H( JCH+1, JCH )
 | 
						|
                     CALL SLARTG( TEMP, H( JCH+1, JCH-1 ), C, S,
 | 
						|
     $                            H( JCH+1, JCH ) )
 | 
						|
                     H( JCH+1, JCH-1 ) = ZERO
 | 
						|
                     CALL SROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
 | 
						|
     $                          H( IFRSTM, JCH-1 ), 1, C, S )
 | 
						|
                     CALL SROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
 | 
						|
     $                          T( IFRSTM, JCH-1 ), 1, C, S )
 | 
						|
                     IF( ILZ )
 | 
						|
     $                  CALL SROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
 | 
						|
     $                             C, S )
 | 
						|
   50             CONTINUE
 | 
						|
                  GO TO 70
 | 
						|
               END IF
 | 
						|
            ELSE IF( ILAZRO ) THEN
 | 
						|
*
 | 
						|
*              Only test 1 passed -- work on J:ILAST
 | 
						|
*
 | 
						|
               IFIRST = J
 | 
						|
               GO TO 110
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Neither test passed -- try next J
 | 
						|
*
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        (Drop-through is "impossible")
 | 
						|
*
 | 
						|
         INFO = N + 1
 | 
						|
         GO TO 420
 | 
						|
*
 | 
						|
*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
 | 
						|
*        1x1 block.
 | 
						|
*
 | 
						|
   70    CONTINUE
 | 
						|
         TEMP = H( ILAST, ILAST )
 | 
						|
         CALL SLARTG( TEMP, H( ILAST, ILAST-1 ), C, S,
 | 
						|
     $                H( ILAST, ILAST ) )
 | 
						|
         H( ILAST, ILAST-1 ) = ZERO
 | 
						|
         CALL SROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
 | 
						|
     $              H( IFRSTM, ILAST-1 ), 1, C, S )
 | 
						|
         CALL SROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
 | 
						|
     $              T( IFRSTM, ILAST-1 ), 1, C, S )
 | 
						|
         IF( ILZ )
 | 
						|
     $      CALL SROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
 | 
						|
*
 | 
						|
*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI,
 | 
						|
*                              and BETA
 | 
						|
*
 | 
						|
   80    CONTINUE
 | 
						|
         IF( T( ILAST, ILAST ).LT.ZERO ) THEN
 | 
						|
            IF( ILSCHR ) THEN
 | 
						|
               DO 90 J = IFRSTM, ILAST
 | 
						|
                  H( J, ILAST ) = -H( J, ILAST )
 | 
						|
                  T( J, ILAST ) = -T( J, ILAST )
 | 
						|
   90          CONTINUE
 | 
						|
            ELSE
 | 
						|
               H( ILAST, ILAST ) = -H( ILAST, ILAST )
 | 
						|
               T( ILAST, ILAST ) = -T( ILAST, ILAST )
 | 
						|
            END IF
 | 
						|
            IF( ILZ ) THEN
 | 
						|
               DO 100 J = 1, N
 | 
						|
                  Z( J, ILAST ) = -Z( J, ILAST )
 | 
						|
  100          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         ALPHAR( ILAST ) = H( ILAST, ILAST )
 | 
						|
         ALPHAI( ILAST ) = ZERO
 | 
						|
         BETA( ILAST ) = T( ILAST, ILAST )
 | 
						|
*
 | 
						|
*        Go to next block -- exit if finished.
 | 
						|
*
 | 
						|
         ILAST = ILAST - 1
 | 
						|
         IF( ILAST.LT.ILO )
 | 
						|
     $      GO TO 380
 | 
						|
*
 | 
						|
*        Reset counters
 | 
						|
*
 | 
						|
         IITER = 0
 | 
						|
         ESHIFT = ZERO
 | 
						|
         IF( .NOT.ILSCHR ) THEN
 | 
						|
            ILASTM = ILAST
 | 
						|
            IF( IFRSTM.GT.ILAST )
 | 
						|
     $         IFRSTM = ILO
 | 
						|
         END IF
 | 
						|
         GO TO 350
 | 
						|
*
 | 
						|
*        QZ step
 | 
						|
*
 | 
						|
*        This iteration only involves rows/columns IFIRST:ILAST. We
 | 
						|
*        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
 | 
						|
*
 | 
						|
  110    CONTINUE
 | 
						|
         IITER = IITER + 1
 | 
						|
         IF( .NOT.ILSCHR ) THEN
 | 
						|
            IFRSTM = IFIRST
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute single shifts.
 | 
						|
*
 | 
						|
*        At this point, IFIRST < ILAST, and the diagonal elements of
 | 
						|
*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
 | 
						|
*        magnitude)
 | 
						|
*
 | 
						|
         IF( ( IITER / 10 )*10.EQ.IITER ) THEN
 | 
						|
*
 | 
						|
*           Exceptional shift.  Chosen for no particularly good reason.
 | 
						|
*           (Single shift only.)
 | 
						|
*
 | 
						|
            IF( ( REAL( MAXIT )*SAFMIN )*ABS( H( ILAST, ILAST-1 ) ).LT.
 | 
						|
     $          ABS( T( ILAST-1, ILAST-1 ) ) ) THEN
 | 
						|
               ESHIFT = H( ILAST, ILAST-1 ) /
 | 
						|
     $                  T( ILAST-1, ILAST-1 )
 | 
						|
            ELSE
 | 
						|
               ESHIFT = ESHIFT + ONE / ( SAFMIN*REAL( MAXIT ) )
 | 
						|
            END IF
 | 
						|
            S1 = ONE
 | 
						|
            WR = ESHIFT
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Shifts based on the generalized eigenvalues of the
 | 
						|
*           bottom-right 2x2 block of A and B. The first eigenvalue
 | 
						|
*           returned by SLAG2 is the Wilkinson shift (AEP p.512),
 | 
						|
*
 | 
						|
            CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH,
 | 
						|
     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
 | 
						|
     $                  S2, WR, WR2, WI )
 | 
						|
*
 | 
						|
            IF ( ABS( (WR/S1)*T( ILAST, ILAST ) - H( ILAST, ILAST ) )
 | 
						|
     $         .GT. ABS( (WR2/S2)*T( ILAST, ILAST )
 | 
						|
     $         - H( ILAST, ILAST ) ) ) THEN
 | 
						|
               TEMP = WR
 | 
						|
               WR = WR2
 | 
						|
               WR2 = TEMP
 | 
						|
               TEMP = S1
 | 
						|
               S1 = S2
 | 
						|
               S2 = TEMP
 | 
						|
            END IF
 | 
						|
            TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) )
 | 
						|
            IF( WI.NE.ZERO )
 | 
						|
     $         GO TO 200
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Fiddle with shift to avoid overflow
 | 
						|
*
 | 
						|
         TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX )
 | 
						|
         IF( S1.GT.TEMP ) THEN
 | 
						|
            SCALE = TEMP / S1
 | 
						|
         ELSE
 | 
						|
            SCALE = ONE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX )
 | 
						|
         IF( ABS( WR ).GT.TEMP )
 | 
						|
     $      SCALE = MIN( SCALE, TEMP / ABS( WR ) )
 | 
						|
         S1 = SCALE*S1
 | 
						|
         WR = SCALE*WR
 | 
						|
*
 | 
						|
*        Now check for two consecutive small subdiagonals.
 | 
						|
*
 | 
						|
         DO 120 J = ILAST - 1, IFIRST + 1, -1
 | 
						|
            ISTART = J
 | 
						|
            TEMP = ABS( S1*H( J, J-1 ) )
 | 
						|
            TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) )
 | 
						|
            TEMPR = MAX( TEMP, TEMP2 )
 | 
						|
            IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
 | 
						|
               TEMP = TEMP / TEMPR
 | 
						|
               TEMP2 = TEMP2 / TEMPR
 | 
						|
            END IF
 | 
						|
            IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )*
 | 
						|
     $          TEMP2 )GO TO 130
 | 
						|
  120    CONTINUE
 | 
						|
*
 | 
						|
         ISTART = IFIRST
 | 
						|
  130    CONTINUE
 | 
						|
*
 | 
						|
*        Do an implicit single-shift QZ sweep.
 | 
						|
*
 | 
						|
*        Initial Q
 | 
						|
*
 | 
						|
         TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART )
 | 
						|
         TEMP2 = S1*H( ISTART+1, ISTART )
 | 
						|
         CALL SLARTG( TEMP, TEMP2, C, S, TEMPR )
 | 
						|
*
 | 
						|
*        Sweep
 | 
						|
*
 | 
						|
         DO 190 J = ISTART, ILAST - 1
 | 
						|
            IF( J.GT.ISTART ) THEN
 | 
						|
               TEMP = H( J, J-1 )
 | 
						|
               CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
 | 
						|
               H( J+1, J-1 ) = ZERO
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 140 JC = J, ILASTM
 | 
						|
               TEMP = C*H( J, JC ) + S*H( J+1, JC )
 | 
						|
               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
 | 
						|
               H( J, JC ) = TEMP
 | 
						|
               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
 | 
						|
               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
 | 
						|
               T( J, JC ) = TEMP2
 | 
						|
  140       CONTINUE
 | 
						|
            IF( ILQ ) THEN
 | 
						|
               DO 150 JR = 1, N
 | 
						|
                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
 | 
						|
                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
 | 
						|
                  Q( JR, J ) = TEMP
 | 
						|
  150          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            TEMP = T( J+1, J+1 )
 | 
						|
            CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
 | 
						|
            T( J+1, J ) = ZERO
 | 
						|
*
 | 
						|
            DO 160 JR = IFRSTM, MIN( J+2, ILAST )
 | 
						|
               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
 | 
						|
               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
 | 
						|
               H( JR, J+1 ) = TEMP
 | 
						|
  160       CONTINUE
 | 
						|
            DO 170 JR = IFRSTM, J
 | 
						|
               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
 | 
						|
               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
 | 
						|
               T( JR, J+1 ) = TEMP
 | 
						|
  170       CONTINUE
 | 
						|
            IF( ILZ ) THEN
 | 
						|
               DO 180 JR = 1, N
 | 
						|
                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
 | 
						|
                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
 | 
						|
                  Z( JR, J+1 ) = TEMP
 | 
						|
  180          CONTINUE
 | 
						|
            END IF
 | 
						|
  190    CONTINUE
 | 
						|
*
 | 
						|
         GO TO 350
 | 
						|
*
 | 
						|
*        Use Francis double-shift
 | 
						|
*
 | 
						|
*        Note: the Francis double-shift should work with real shifts,
 | 
						|
*              but only if the block is at least 3x3.
 | 
						|
*              This code may break if this point is reached with
 | 
						|
*              a 2x2 block with real eigenvalues.
 | 
						|
*
 | 
						|
  200    CONTINUE
 | 
						|
         IF( IFIRST+1.EQ.ILAST ) THEN
 | 
						|
*
 | 
						|
*           Special case -- 2x2 block with complex eigenvectors
 | 
						|
*
 | 
						|
*           Step 1: Standardize, that is, rotate so that
 | 
						|
*
 | 
						|
*                       ( B11  0  )
 | 
						|
*                   B = (         )  with B11 non-negative.
 | 
						|
*                       (  0  B22 )
 | 
						|
*
 | 
						|
            CALL SLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ),
 | 
						|
     $                   T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL )
 | 
						|
*
 | 
						|
            IF( B11.LT.ZERO ) THEN
 | 
						|
               CR = -CR
 | 
						|
               SR = -SR
 | 
						|
               B11 = -B11
 | 
						|
               B22 = -B22
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            CALL SROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH,
 | 
						|
     $                 H( ILAST, ILAST-1 ), LDH, CL, SL )
 | 
						|
            CALL SROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1,
 | 
						|
     $                 H( IFRSTM, ILAST ), 1, CR, SR )
 | 
						|
*
 | 
						|
            IF( ILAST.LT.ILASTM )
 | 
						|
     $         CALL SROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT,
 | 
						|
     $                    T( ILAST, ILAST+1 ), LDT, CL, SL )
 | 
						|
            IF( IFRSTM.LT.ILAST-1 )
 | 
						|
     $         CALL SROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1,
 | 
						|
     $                    T( IFRSTM, ILAST ), 1, CR, SR )
 | 
						|
*
 | 
						|
            IF( ILQ )
 | 
						|
     $         CALL SROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL,
 | 
						|
     $                    SL )
 | 
						|
            IF( ILZ )
 | 
						|
     $         CALL SROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR,
 | 
						|
     $                    SR )
 | 
						|
*
 | 
						|
            T( ILAST-1, ILAST-1 ) = B11
 | 
						|
            T( ILAST-1, ILAST ) = ZERO
 | 
						|
            T( ILAST, ILAST-1 ) = ZERO
 | 
						|
            T( ILAST, ILAST ) = B22
 | 
						|
*
 | 
						|
*           If B22 is negative, negate column ILAST
 | 
						|
*
 | 
						|
            IF( B22.LT.ZERO ) THEN
 | 
						|
               DO 210 J = IFRSTM, ILAST
 | 
						|
                  H( J, ILAST ) = -H( J, ILAST )
 | 
						|
                  T( J, ILAST ) = -T( J, ILAST )
 | 
						|
  210          CONTINUE
 | 
						|
*
 | 
						|
               IF( ILZ ) THEN
 | 
						|
                  DO 220 J = 1, N
 | 
						|
                     Z( J, ILAST ) = -Z( J, ILAST )
 | 
						|
  220             CONTINUE
 | 
						|
               END IF
 | 
						|
               B22 = -B22
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.)
 | 
						|
*
 | 
						|
*           Recompute shift
 | 
						|
*
 | 
						|
            CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH,
 | 
						|
     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
 | 
						|
     $                  TEMP, WR, TEMP2, WI )
 | 
						|
*
 | 
						|
*           If standardization has perturbed the shift onto real line,
 | 
						|
*           do another (real single-shift) QR step.
 | 
						|
*
 | 
						|
            IF( WI.EQ.ZERO )
 | 
						|
     $         GO TO 350
 | 
						|
            S1INV = ONE / S1
 | 
						|
*
 | 
						|
*           Do EISPACK (QZVAL) computation of alpha and beta
 | 
						|
*
 | 
						|
            A11 = H( ILAST-1, ILAST-1 )
 | 
						|
            A21 = H( ILAST, ILAST-1 )
 | 
						|
            A12 = H( ILAST-1, ILAST )
 | 
						|
            A22 = H( ILAST, ILAST )
 | 
						|
*
 | 
						|
*           Compute complex Givens rotation on right
 | 
						|
*           (Assume some element of C = (sA - wB) > unfl )
 | 
						|
*                            __
 | 
						|
*           (sA - wB) ( CZ   -SZ )
 | 
						|
*                     ( SZ    CZ )
 | 
						|
*
 | 
						|
            C11R = S1*A11 - WR*B11
 | 
						|
            C11I = -WI*B11
 | 
						|
            C12 = S1*A12
 | 
						|
            C21 = S1*A21
 | 
						|
            C22R = S1*A22 - WR*B22
 | 
						|
            C22I = -WI*B22
 | 
						|
*
 | 
						|
            IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+
 | 
						|
     $          ABS( C22R )+ABS( C22I ) ) THEN
 | 
						|
               T1 = SLAPY3( C12, C11R, C11I )
 | 
						|
               CZ = C12 / T1
 | 
						|
               SZR = -C11R / T1
 | 
						|
               SZI = -C11I / T1
 | 
						|
            ELSE
 | 
						|
               CZ = SLAPY2( C22R, C22I )
 | 
						|
               IF( CZ.LE.SAFMIN ) THEN
 | 
						|
                  CZ = ZERO
 | 
						|
                  SZR = ONE
 | 
						|
                  SZI = ZERO
 | 
						|
               ELSE
 | 
						|
                  TEMPR = C22R / CZ
 | 
						|
                  TEMPI = C22I / CZ
 | 
						|
                  T1 = SLAPY2( CZ, C21 )
 | 
						|
                  CZ = CZ / T1
 | 
						|
                  SZR = -C21*TEMPR / T1
 | 
						|
                  SZI = C21*TEMPI / T1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute Givens rotation on left
 | 
						|
*
 | 
						|
*           (  CQ   SQ )
 | 
						|
*           (  __      )  A or B
 | 
						|
*           ( -SQ   CQ )
 | 
						|
*
 | 
						|
            AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 )
 | 
						|
            BN = ABS( B11 ) + ABS( B22 )
 | 
						|
            WABS = ABS( WR ) + ABS( WI )
 | 
						|
            IF( S1*AN.GT.WABS*BN ) THEN
 | 
						|
               CQ = CZ*B11
 | 
						|
               SQR = SZR*B22
 | 
						|
               SQI = -SZI*B22
 | 
						|
            ELSE
 | 
						|
               A1R = CZ*A11 + SZR*A12
 | 
						|
               A1I = SZI*A12
 | 
						|
               A2R = CZ*A21 + SZR*A22
 | 
						|
               A2I = SZI*A22
 | 
						|
               CQ = SLAPY2( A1R, A1I )
 | 
						|
               IF( CQ.LE.SAFMIN ) THEN
 | 
						|
                  CQ = ZERO
 | 
						|
                  SQR = ONE
 | 
						|
                  SQI = ZERO
 | 
						|
               ELSE
 | 
						|
                  TEMPR = A1R / CQ
 | 
						|
                  TEMPI = A1I / CQ
 | 
						|
                  SQR = TEMPR*A2R + TEMPI*A2I
 | 
						|
                  SQI = TEMPI*A2R - TEMPR*A2I
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            T1 = SLAPY3( CQ, SQR, SQI )
 | 
						|
            CQ = CQ / T1
 | 
						|
            SQR = SQR / T1
 | 
						|
            SQI = SQI / T1
 | 
						|
*
 | 
						|
*           Compute diagonal elements of QBZ
 | 
						|
*
 | 
						|
            TEMPR = SQR*SZR - SQI*SZI
 | 
						|
            TEMPI = SQR*SZI + SQI*SZR
 | 
						|
            B1R = CQ*CZ*B11 + TEMPR*B22
 | 
						|
            B1I = TEMPI*B22
 | 
						|
            B1A = SLAPY2( B1R, B1I )
 | 
						|
            B2R = CQ*CZ*B22 + TEMPR*B11
 | 
						|
            B2I = -TEMPI*B11
 | 
						|
            B2A = SLAPY2( B2R, B2I )
 | 
						|
*
 | 
						|
*           Normalize so beta > 0, and Im( alpha1 ) > 0
 | 
						|
*
 | 
						|
            BETA( ILAST-1 ) = B1A
 | 
						|
            BETA( ILAST ) = B2A
 | 
						|
            ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV
 | 
						|
            ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV
 | 
						|
            ALPHAR( ILAST ) = ( WR*B2A )*S1INV
 | 
						|
            ALPHAI( ILAST ) = -( WI*B2A )*S1INV
 | 
						|
*
 | 
						|
*           Step 3: Go to next block -- exit if finished.
 | 
						|
*
 | 
						|
            ILAST = IFIRST - 1
 | 
						|
            IF( ILAST.LT.ILO )
 | 
						|
     $         GO TO 380
 | 
						|
*
 | 
						|
*           Reset counters
 | 
						|
*
 | 
						|
            IITER = 0
 | 
						|
            ESHIFT = ZERO
 | 
						|
            IF( .NOT.ILSCHR ) THEN
 | 
						|
               ILASTM = ILAST
 | 
						|
               IF( IFRSTM.GT.ILAST )
 | 
						|
     $            IFRSTM = ILO
 | 
						|
            END IF
 | 
						|
            GO TO 350
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Usual case: 3x3 or larger block, using Francis implicit
 | 
						|
*                       double-shift
 | 
						|
*
 | 
						|
*                                    2
 | 
						|
*           Eigenvalue equation is  w  - c w + d = 0,
 | 
						|
*
 | 
						|
*                                         -1 2        -1
 | 
						|
*           so compute 1st column of  (A B  )  - c A B   + d
 | 
						|
*           using the formula in QZIT (from EISPACK)
 | 
						|
*
 | 
						|
*           We assume that the block is at least 3x3
 | 
						|
*
 | 
						|
            AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
 | 
						|
     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
 | 
						|
            AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
 | 
						|
     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
 | 
						|
            AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
 | 
						|
     $             ( BSCALE*T( ILAST, ILAST ) )
 | 
						|
            AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
 | 
						|
     $             ( BSCALE*T( ILAST, ILAST ) )
 | 
						|
            U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST )
 | 
						|
            AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) /
 | 
						|
     $              ( BSCALE*T( IFIRST, IFIRST ) )
 | 
						|
            AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) /
 | 
						|
     $              ( BSCALE*T( IFIRST, IFIRST ) )
 | 
						|
            AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) /
 | 
						|
     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
 | 
						|
            AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) /
 | 
						|
     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
 | 
						|
            AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) /
 | 
						|
     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
 | 
						|
            U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 )
 | 
						|
*
 | 
						|
            V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 +
 | 
						|
     $               AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L
 | 
						|
            V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )-
 | 
						|
     $               ( AD22-AD11L )+AD21*U12 )*AD21L
 | 
						|
            V( 3 ) = AD32L*AD21L
 | 
						|
*
 | 
						|
            ISTART = IFIRST
 | 
						|
*
 | 
						|
            CALL SLARFG( 3, V( 1 ), V( 2 ), 1, TAU )
 | 
						|
            V( 1 ) = ONE
 | 
						|
*
 | 
						|
*           Sweep
 | 
						|
*
 | 
						|
            DO 290 J = ISTART, ILAST - 2
 | 
						|
*
 | 
						|
*              All but last elements: use 3x3 Householder transforms.
 | 
						|
*
 | 
						|
*              Zero (j-1)st column of A
 | 
						|
*
 | 
						|
               IF( J.GT.ISTART ) THEN
 | 
						|
                  V( 1 ) = H( J, J-1 )
 | 
						|
                  V( 2 ) = H( J+1, J-1 )
 | 
						|
                  V( 3 ) = H( J+2, J-1 )
 | 
						|
*
 | 
						|
                  CALL SLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU )
 | 
						|
                  V( 1 ) = ONE
 | 
						|
                  H( J+1, J-1 ) = ZERO
 | 
						|
                  H( J+2, J-1 ) = ZERO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               T2 = TAU * V( 2 )
 | 
						|
               T3 = TAU * V( 3 )
 | 
						|
               DO 230 JC = J, ILASTM
 | 
						|
                  TEMP = H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
 | 
						|
     $                   H( J+2, JC )
 | 
						|
                  H( J, JC ) = H( J, JC ) - TEMP*TAU
 | 
						|
                  H( J+1, JC ) = H( J+1, JC ) - TEMP*T2
 | 
						|
                  H( J+2, JC ) = H( J+2, JC ) - TEMP*T3
 | 
						|
                  TEMP2 = T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
 | 
						|
     $                    T( J+2, JC )
 | 
						|
                  T( J, JC ) = T( J, JC ) - TEMP2*TAU
 | 
						|
                  T( J+1, JC ) = T( J+1, JC ) - TEMP2*T2
 | 
						|
                  T( J+2, JC ) = T( J+2, JC ) - TEMP2*T3
 | 
						|
  230          CONTINUE
 | 
						|
               IF( ILQ ) THEN
 | 
						|
                  DO 240 JR = 1, N
 | 
						|
                     TEMP = Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
 | 
						|
     $                      Q( JR, J+2 )
 | 
						|
                     Q( JR, J ) = Q( JR, J ) - TEMP*TAU
 | 
						|
                     Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*T2
 | 
						|
                     Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*T3
 | 
						|
  240             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Zero j-th column of B (see SLAGBC for details)
 | 
						|
*
 | 
						|
*              Swap rows to pivot
 | 
						|
*
 | 
						|
               ILPIVT = .FALSE.
 | 
						|
               TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) )
 | 
						|
               TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) )
 | 
						|
               IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN
 | 
						|
                  SCALE = ZERO
 | 
						|
                  U1 = ONE
 | 
						|
                  U2 = ZERO
 | 
						|
                  GO TO 250
 | 
						|
               ELSE IF( TEMP.GE.TEMP2 ) THEN
 | 
						|
                  W11 = T( J+1, J+1 )
 | 
						|
                  W21 = T( J+2, J+1 )
 | 
						|
                  W12 = T( J+1, J+2 )
 | 
						|
                  W22 = T( J+2, J+2 )
 | 
						|
                  U1 = T( J+1, J )
 | 
						|
                  U2 = T( J+2, J )
 | 
						|
               ELSE
 | 
						|
                  W21 = T( J+1, J+1 )
 | 
						|
                  W11 = T( J+2, J+1 )
 | 
						|
                  W22 = T( J+1, J+2 )
 | 
						|
                  W12 = T( J+2, J+2 )
 | 
						|
                  U2 = T( J+1, J )
 | 
						|
                  U1 = T( J+2, J )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Swap columns if nec.
 | 
						|
*
 | 
						|
               IF( ABS( W12 ).GT.ABS( W11 ) ) THEN
 | 
						|
                  ILPIVT = .TRUE.
 | 
						|
                  TEMP = W12
 | 
						|
                  TEMP2 = W22
 | 
						|
                  W12 = W11
 | 
						|
                  W22 = W21
 | 
						|
                  W11 = TEMP
 | 
						|
                  W21 = TEMP2
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              LU-factor
 | 
						|
*
 | 
						|
               TEMP = W21 / W11
 | 
						|
               U2 = U2 - TEMP*U1
 | 
						|
               W22 = W22 - TEMP*W12
 | 
						|
               W21 = ZERO
 | 
						|
*
 | 
						|
*              Compute SCALE
 | 
						|
*
 | 
						|
               SCALE = ONE
 | 
						|
               IF( ABS( W22 ).LT.SAFMIN ) THEN
 | 
						|
                  SCALE = ZERO
 | 
						|
                  U2 = ONE
 | 
						|
                  U1 = -W12 / W11
 | 
						|
                  GO TO 250
 | 
						|
               END IF
 | 
						|
               IF( ABS( W22 ).LT.ABS( U2 ) )
 | 
						|
     $            SCALE = ABS( W22 / U2 )
 | 
						|
               IF( ABS( W11 ).LT.ABS( U1 ) )
 | 
						|
     $            SCALE = MIN( SCALE, ABS( W11 / U1 ) )
 | 
						|
*
 | 
						|
*              Solve
 | 
						|
*
 | 
						|
               U2 = ( SCALE*U2 ) / W22
 | 
						|
               U1 = ( SCALE*U1-W12*U2 ) / W11
 | 
						|
*
 | 
						|
  250          CONTINUE
 | 
						|
               IF( ILPIVT ) THEN
 | 
						|
                  TEMP = U2
 | 
						|
                  U2 = U1
 | 
						|
                  U1 = TEMP
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Compute Householder Vector
 | 
						|
*
 | 
						|
               T1 = SQRT( SCALE**2+U1**2+U2**2 )
 | 
						|
               TAU = ONE + SCALE / T1
 | 
						|
               VS = -ONE / ( SCALE+T1 )
 | 
						|
               V( 1 ) = ONE
 | 
						|
               V( 2 ) = VS*U1
 | 
						|
               V( 3 ) = VS*U2
 | 
						|
*
 | 
						|
*              Apply transformations from the right.
 | 
						|
*
 | 
						|
               T2 = TAU*V( 2 )
 | 
						|
               T3 = TAU*V( 3 )
 | 
						|
               DO 260 JR = IFRSTM, MIN( J+3, ILAST )
 | 
						|
                  TEMP = H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
 | 
						|
     $                   H( JR, J+2 )
 | 
						|
                  H( JR, J ) = H( JR, J ) - TEMP*TAU
 | 
						|
                  H( JR, J+1 ) = H( JR, J+1 ) - TEMP*T2
 | 
						|
                  H( JR, J+2 ) = H( JR, J+2 ) - TEMP*T3
 | 
						|
  260          CONTINUE
 | 
						|
               DO 270 JR = IFRSTM, J + 2
 | 
						|
                  TEMP = T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
 | 
						|
     $                   T( JR, J+2 )
 | 
						|
                  T( JR, J ) = T( JR, J ) - TEMP*TAU
 | 
						|
                  T( JR, J+1 ) = T( JR, J+1 ) - TEMP*T2
 | 
						|
                  T( JR, J+2 ) = T( JR, J+2 ) - TEMP*T3
 | 
						|
  270          CONTINUE
 | 
						|
               IF( ILZ ) THEN
 | 
						|
                  DO 280 JR = 1, N
 | 
						|
                     TEMP = Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
 | 
						|
     $                      Z( JR, J+2 )
 | 
						|
                     Z( JR, J ) = Z( JR, J ) - TEMP*TAU
 | 
						|
                     Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*T2
 | 
						|
                     Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*T3
 | 
						|
  280             CONTINUE
 | 
						|
               END IF
 | 
						|
               T( J+1, J ) = ZERO
 | 
						|
               T( J+2, J ) = ZERO
 | 
						|
  290       CONTINUE
 | 
						|
*
 | 
						|
*           Last elements: Use Givens rotations
 | 
						|
*
 | 
						|
*           Rotations from the left
 | 
						|
*
 | 
						|
            J = ILAST - 1
 | 
						|
            TEMP = H( J, J-1 )
 | 
						|
            CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
 | 
						|
            H( J+1, J-1 ) = ZERO
 | 
						|
*
 | 
						|
            DO 300 JC = J, ILASTM
 | 
						|
               TEMP = C*H( J, JC ) + S*H( J+1, JC )
 | 
						|
               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
 | 
						|
               H( J, JC ) = TEMP
 | 
						|
               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
 | 
						|
               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
 | 
						|
               T( J, JC ) = TEMP2
 | 
						|
  300       CONTINUE
 | 
						|
            IF( ILQ ) THEN
 | 
						|
               DO 310 JR = 1, N
 | 
						|
                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
 | 
						|
                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
 | 
						|
                  Q( JR, J ) = TEMP
 | 
						|
  310          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Rotations from the right.
 | 
						|
*
 | 
						|
            TEMP = T( J+1, J+1 )
 | 
						|
            CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
 | 
						|
            T( J+1, J ) = ZERO
 | 
						|
*
 | 
						|
            DO 320 JR = IFRSTM, ILAST
 | 
						|
               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
 | 
						|
               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
 | 
						|
               H( JR, J+1 ) = TEMP
 | 
						|
  320       CONTINUE
 | 
						|
            DO 330 JR = IFRSTM, ILAST - 1
 | 
						|
               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
 | 
						|
               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
 | 
						|
               T( JR, J+1 ) = TEMP
 | 
						|
  330       CONTINUE
 | 
						|
            IF( ILZ ) THEN
 | 
						|
               DO 340 JR = 1, N
 | 
						|
                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
 | 
						|
                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
 | 
						|
                  Z( JR, J+1 ) = TEMP
 | 
						|
  340          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           End of Double-Shift code
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         GO TO 350
 | 
						|
*
 | 
						|
*        End of iteration loop
 | 
						|
*
 | 
						|
  350    CONTINUE
 | 
						|
  360 CONTINUE
 | 
						|
*
 | 
						|
*     Drop-through = non-convergence
 | 
						|
*
 | 
						|
      INFO = ILAST
 | 
						|
      GO TO 420
 | 
						|
*
 | 
						|
*     Successful completion of all QZ steps
 | 
						|
*
 | 
						|
  380 CONTINUE
 | 
						|
*
 | 
						|
*     Set Eigenvalues 1:ILO-1
 | 
						|
*
 | 
						|
      DO 410 J = 1, ILO - 1
 | 
						|
         IF( T( J, J ).LT.ZERO ) THEN
 | 
						|
            IF( ILSCHR ) THEN
 | 
						|
               DO 390 JR = 1, J
 | 
						|
                  H( JR, J ) = -H( JR, J )
 | 
						|
                  T( JR, J ) = -T( JR, J )
 | 
						|
  390          CONTINUE
 | 
						|
            ELSE
 | 
						|
               H( J, J ) = -H( J, J )
 | 
						|
               T( J, J ) = -T( J, J )
 | 
						|
            END IF
 | 
						|
            IF( ILZ ) THEN
 | 
						|
               DO 400 JR = 1, N
 | 
						|
                  Z( JR, J ) = -Z( JR, J )
 | 
						|
  400          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         ALPHAR( J ) = H( J, J )
 | 
						|
         ALPHAI( J ) = ZERO
 | 
						|
         BETA( J ) = T( J, J )
 | 
						|
  410 CONTINUE
 | 
						|
*
 | 
						|
*     Normal Termination
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Exit (other than argument error) -- return optimal workspace size
 | 
						|
*
 | 
						|
  420 CONTINUE
 | 
						|
      WORK( 1 ) = REAL( N )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SHGEQZ
 | 
						|
*
 | 
						|
      END
 |