698 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTGSNA
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DTGSNA + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsna.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsna.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsna.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 | 
						|
*                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          HOWMNY, JOB
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            SELECT( * )
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
 | 
						|
*      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTGSNA estimates reciprocal condition numbers for specified
 | 
						|
*> eigenvalues and/or eigenvectors of a matrix pair (A, B) in
 | 
						|
*> generalized real Schur canonical form (or of any matrix pair
 | 
						|
*> (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where
 | 
						|
*> Z**T denotes the transpose of Z.
 | 
						|
*>
 | 
						|
*> (A, B) must be in generalized real Schur form (as returned by DGGES),
 | 
						|
*> i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
 | 
						|
*> blocks. B is upper triangular.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          Specifies whether condition numbers are required for
 | 
						|
*>          eigenvalues (S) or eigenvectors (DIF):
 | 
						|
*>          = 'E': for eigenvalues only (S);
 | 
						|
*>          = 'V': for eigenvectors only (DIF);
 | 
						|
*>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] HOWMNY
 | 
						|
*> \verbatim
 | 
						|
*>          HOWMNY is CHARACTER*1
 | 
						|
*>          = 'A': compute condition numbers for all eigenpairs;
 | 
						|
*>          = 'S': compute condition numbers for selected eigenpairs
 | 
						|
*>                 specified by the array SELECT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL array, dimension (N)
 | 
						|
*>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
 | 
						|
*>          condition numbers are required. To select condition numbers
 | 
						|
*>          for the eigenpair corresponding to a real eigenvalue w(j),
 | 
						|
*>          SELECT(j) must be set to .TRUE.. To select condition numbers
 | 
						|
*>          corresponding to a complex conjugate pair of eigenvalues w(j)
 | 
						|
*>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
 | 
						|
*>          set to .TRUE..
 | 
						|
*>          If HOWMNY = 'A', SELECT is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the square matrix pair (A, B). N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The upper quasi-triangular matrix A in the pair (A,B).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,N)
 | 
						|
*>          The upper triangular matrix B in the pair (A,B).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION array, dimension (LDVL,M)
 | 
						|
*>          If JOB = 'E' or 'B', VL must contain left eigenvectors of
 | 
						|
*>          (A, B), corresponding to the eigenpairs specified by HOWMNY
 | 
						|
*>          and SELECT. The eigenvectors must be stored in consecutive
 | 
						|
*>          columns of VL, as returned by DTGEVC.
 | 
						|
*>          If JOB = 'V', VL is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the array VL. LDVL >= 1.
 | 
						|
*>          If JOB = 'E' or 'B', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is DOUBLE PRECISION array, dimension (LDVR,M)
 | 
						|
*>          If JOB = 'E' or 'B', VR must contain right eigenvectors of
 | 
						|
*>          (A, B), corresponding to the eigenpairs specified by HOWMNY
 | 
						|
*>          and SELECT. The eigenvectors must be stored in consecutive
 | 
						|
*>          columns ov VR, as returned by DTGEVC.
 | 
						|
*>          If JOB = 'V', VR is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR. LDVR >= 1.
 | 
						|
*>          If JOB = 'E' or 'B', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (MM)
 | 
						|
*>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
 | 
						|
*>          selected eigenvalues, stored in consecutive elements of the
 | 
						|
*>          array. For a complex conjugate pair of eigenvalues two
 | 
						|
*>          consecutive elements of S are set to the same value. Thus
 | 
						|
*>          S(j), DIF(j), and the j-th columns of VL and VR all
 | 
						|
*>          correspond to the same eigenpair (but not in general the
 | 
						|
*>          j-th eigenpair, unless all eigenpairs are selected).
 | 
						|
*>          If JOB = 'V', S is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIF
 | 
						|
*> \verbatim
 | 
						|
*>          DIF is DOUBLE PRECISION array, dimension (MM)
 | 
						|
*>          If JOB = 'V' or 'B', the estimated reciprocal condition
 | 
						|
*>          numbers of the selected eigenvectors, stored in consecutive
 | 
						|
*>          elements of the array. For a complex eigenvector two
 | 
						|
*>          consecutive elements of DIF are set to the same value. If
 | 
						|
*>          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
 | 
						|
*>          is set to 0; this can only occur when the true value would be
 | 
						|
*>          very small anyway.
 | 
						|
*>          If JOB = 'E', DIF is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MM
 | 
						|
*> \verbatim
 | 
						|
*>          MM is INTEGER
 | 
						|
*>          The number of elements in the arrays S and DIF. MM >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of elements of the arrays S and DIF used to store
 | 
						|
*>          the specified condition numbers; for each selected real
 | 
						|
*>          eigenvalue one element is used, and for each selected complex
 | 
						|
*>          conjugate pair of eigenvalues, two elements are used.
 | 
						|
*>          If HOWMNY = 'A', M is set to N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,N).
 | 
						|
*>          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N + 6)
 | 
						|
*>          If JOB = 'E', IWORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          =0: Successful exit
 | 
						|
*>          <0: If INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The reciprocal of the condition number of a generalized eigenvalue
 | 
						|
*>  w = (a, b) is defined as
 | 
						|
*>
 | 
						|
*>       S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v))
 | 
						|
*>
 | 
						|
*>  where u and v are the left and right eigenvectors of (A, B)
 | 
						|
*>  corresponding to w; |z| denotes the absolute value of the complex
 | 
						|
*>  number, and norm(u) denotes the 2-norm of the vector u.
 | 
						|
*>  The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv)
 | 
						|
*>  of the matrix pair (A, B). If both a and b equal zero, then (A B) is
 | 
						|
*>  singular and S(I) = -1 is returned.
 | 
						|
*>
 | 
						|
*>  An approximate error bound on the chordal distance between the i-th
 | 
						|
*>  computed generalized eigenvalue w and the corresponding exact
 | 
						|
*>  eigenvalue lambda is
 | 
						|
*>
 | 
						|
*>       chord(w, lambda) <= EPS * norm(A, B) / S(I)
 | 
						|
*>
 | 
						|
*>  where EPS is the machine precision.
 | 
						|
*>
 | 
						|
*>  The reciprocal of the condition number DIF(i) of right eigenvector u
 | 
						|
*>  and left eigenvector v corresponding to the generalized eigenvalue w
 | 
						|
*>  is defined as follows:
 | 
						|
*>
 | 
						|
*>  a) If the i-th eigenvalue w = (a,b) is real
 | 
						|
*>
 | 
						|
*>     Suppose U and V are orthogonal transformations such that
 | 
						|
*>
 | 
						|
*>              U**T*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1
 | 
						|
*>                                        ( 0  S22 ),( 0 T22 )  n-1
 | 
						|
*>                                          1  n-1     1 n-1
 | 
						|
*>
 | 
						|
*>     Then the reciprocal condition number DIF(i) is
 | 
						|
*>
 | 
						|
*>                Difl((a, b), (S22, T22)) = sigma-min( Zl ),
 | 
						|
*>
 | 
						|
*>     where sigma-min(Zl) denotes the smallest singular value of the
 | 
						|
*>     2(n-1)-by-2(n-1) matrix
 | 
						|
*>
 | 
						|
*>         Zl = [ kron(a, In-1)  -kron(1, S22) ]
 | 
						|
*>              [ kron(b, In-1)  -kron(1, T22) ] .
 | 
						|
*>
 | 
						|
*>     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
 | 
						|
*>     Kronecker product between the matrices X and Y.
 | 
						|
*>
 | 
						|
*>     Note that if the default method for computing DIF(i) is wanted
 | 
						|
*>     (see DLATDF), then the parameter DIFDRI (see below) should be
 | 
						|
*>     changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)).
 | 
						|
*>     See DTGSYL for more details.
 | 
						|
*>
 | 
						|
*>  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
 | 
						|
*>
 | 
						|
*>     Suppose U and V are orthogonal transformations such that
 | 
						|
*>
 | 
						|
*>              U**T*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2
 | 
						|
*>                                       ( 0    S22 ),( 0    T22) n-2
 | 
						|
*>                                         2    n-2     2    n-2
 | 
						|
*>
 | 
						|
*>     and (S11, T11) corresponds to the complex conjugate eigenvalue
 | 
						|
*>     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
 | 
						|
*>     that
 | 
						|
*>
 | 
						|
*>       U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 )
 | 
						|
*>                      (  0  s22 )                    (  0  t22 )
 | 
						|
*>
 | 
						|
*>     where the generalized eigenvalues w = s11/t11 and
 | 
						|
*>     conjg(w) = s22/t22.
 | 
						|
*>
 | 
						|
*>     Then the reciprocal condition number DIF(i) is bounded by
 | 
						|
*>
 | 
						|
*>         min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
 | 
						|
*>
 | 
						|
*>     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
 | 
						|
*>     Z1 is the complex 2-by-2 matrix
 | 
						|
*>
 | 
						|
*>              Z1 =  [ s11  -s22 ]
 | 
						|
*>                    [ t11  -t22 ],
 | 
						|
*>
 | 
						|
*>     This is done by computing (using real arithmetic) the
 | 
						|
*>     roots of the characteristical polynomial det(Z1**T * Z1 - lambda I),
 | 
						|
*>     where Z1**T denotes the transpose of Z1 and det(X) denotes
 | 
						|
*>     the determinant of X.
 | 
						|
*>
 | 
						|
*>     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
 | 
						|
*>     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
 | 
						|
*>
 | 
						|
*>              Z2 = [ kron(S11**T, In-2)  -kron(I2, S22) ]
 | 
						|
*>                   [ kron(T11**T, In-2)  -kron(I2, T22) ]
 | 
						|
*>
 | 
						|
*>     Note that if the default method for computing DIF is wanted (see
 | 
						|
*>     DLATDF), then the parameter DIFDRI (see below) should be changed
 | 
						|
*>     from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL
 | 
						|
*>     for more details.
 | 
						|
*>
 | 
						|
*>  For each eigenvalue/vector specified by SELECT, DIF stores a
 | 
						|
*>  Frobenius norm-based estimate of Difl.
 | 
						|
*>
 | 
						|
*>  An approximate error bound for the i-th computed eigenvector VL(i) or
 | 
						|
*>  VR(i) is given by
 | 
						|
*>
 | 
						|
*>             EPS * norm(A, B) / DIF(i).
 | 
						|
*>
 | 
						|
*>  See ref. [2-3] for more details and further references.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | 
						|
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | 
						|
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | 
						|
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | 
						|
*>
 | 
						|
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | 
						|
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | 
						|
*>      Estimation: Theory, Algorithms and Software,
 | 
						|
*>      Report UMINF - 94.04, Department of Computing Science, Umea
 | 
						|
*>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
 | 
						|
*>      Note 87. To appear in Numerical Algorithms, 1996.
 | 
						|
*>
 | 
						|
*>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | 
						|
*>      for Solving the Generalized Sylvester Equation and Estimating the
 | 
						|
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | 
						|
*>      Department of Computing Science, Umea University, S-901 87 Umea,
 | 
						|
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | 
						|
*>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
 | 
						|
*>      No 1, 1996.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
 | 
						|
     $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          HOWMNY, JOB
 | 
						|
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            SELECT( * )
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
 | 
						|
     $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            DIFDRI
 | 
						|
      PARAMETER          ( DIFDRI = 3 )
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO, FOUR
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
 | 
						|
     $                   FOUR = 4.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, PAIR, SOMCON, WANTBH, WANTDF, WANTS
 | 
						|
      INTEGER            I, IERR, IFST, ILST, IZ, K, KS, LWMIN, N1, N2
 | 
						|
      DOUBLE PRECISION   ALPHAI, ALPHAR, ALPRQT, BETA, C1, C2, COND,
 | 
						|
     $                   EPS, LNRM, RNRM, ROOT1, ROOT2, SCALE, SMLNUM,
 | 
						|
     $                   TMPII, TMPIR, TMPRI, TMPRR, UHAV, UHAVI, UHBV,
 | 
						|
     $                   UHBVI
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   DUMMY( 1 ), DUMMY1( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DDOT, DLAMCH, DLAPY2, DNRM2
 | 
						|
      EXTERNAL           LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMV, DLACPY, DLAG2, DTGEXC, DTGSYL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters
 | 
						|
*
 | 
						|
      WANTBH = LSAME( JOB, 'B' )
 | 
						|
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 | 
						|
      WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
 | 
						|
*
 | 
						|
      SOMCON = LSAME( HOWMNY, 'S' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
 | 
						|
         INFO = -12
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Set M to the number of eigenpairs for which condition numbers
 | 
						|
*        are required, and test MM.
 | 
						|
*
 | 
						|
         IF( SOMCON ) THEN
 | 
						|
            M = 0
 | 
						|
            PAIR = .FALSE.
 | 
						|
            DO 10 K = 1, N
 | 
						|
               IF( PAIR ) THEN
 | 
						|
                  PAIR = .FALSE.
 | 
						|
               ELSE
 | 
						|
                  IF( K.LT.N ) THEN
 | 
						|
                     IF( A( K+1, K ).EQ.ZERO ) THEN
 | 
						|
                        IF( SELECT( K ) )
 | 
						|
     $                     M = M + 1
 | 
						|
                     ELSE
 | 
						|
                        PAIR = .TRUE.
 | 
						|
                        IF( SELECT( K ) .OR. SELECT( K+1 ) )
 | 
						|
     $                     M = M + 2
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     IF( SELECT( N ) )
 | 
						|
     $                  M = M + 1
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            M = N
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            LWMIN = 1
 | 
						|
         ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
 | 
						|
            LWMIN = 2*N*( N + 2 ) + 16
 | 
						|
         ELSE
 | 
						|
            LWMIN = N
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
*
 | 
						|
         IF( MM.LT.M ) THEN
 | 
						|
            INFO = -15
 | 
						|
         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -18
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DTGSNA', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SMLNUM = DLAMCH( 'S' ) / EPS
 | 
						|
      KS = 0
 | 
						|
      PAIR = .FALSE.
 | 
						|
*
 | 
						|
      DO 20 K = 1, N
 | 
						|
*
 | 
						|
*        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block.
 | 
						|
*
 | 
						|
         IF( PAIR ) THEN
 | 
						|
            PAIR = .FALSE.
 | 
						|
            GO TO 20
 | 
						|
         ELSE
 | 
						|
            IF( K.LT.N )
 | 
						|
     $         PAIR = A( K+1, K ).NE.ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Determine whether condition numbers are required for the k-th
 | 
						|
*        eigenpair.
 | 
						|
*
 | 
						|
         IF( SOMCON ) THEN
 | 
						|
            IF( PAIR ) THEN
 | 
						|
               IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
 | 
						|
     $            GO TO 20
 | 
						|
            ELSE
 | 
						|
               IF( .NOT.SELECT( K ) )
 | 
						|
     $            GO TO 20
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         KS = KS + 1
 | 
						|
*
 | 
						|
         IF( WANTS ) THEN
 | 
						|
*
 | 
						|
*           Compute the reciprocal condition number of the k-th
 | 
						|
*           eigenvalue.
 | 
						|
*
 | 
						|
            IF( PAIR ) THEN
 | 
						|
*
 | 
						|
*              Complex eigenvalue pair.
 | 
						|
*
 | 
						|
               RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
 | 
						|
     $                DNRM2( N, VR( 1, KS+1 ), 1 ) )
 | 
						|
               LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
 | 
						|
     $                DNRM2( N, VL( 1, KS+1 ), 1 ) )
 | 
						|
               CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               TMPRR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
               TMPRI = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
 | 
						|
               CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS+1 ), 1,
 | 
						|
     $                     ZERO, WORK, 1 )
 | 
						|
               TMPII = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
 | 
						|
               TMPIR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
               UHAV = TMPRR + TMPII
 | 
						|
               UHAVI = TMPIR - TMPRI
 | 
						|
               CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               TMPRR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
               TMPRI = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
 | 
						|
               CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS+1 ), 1,
 | 
						|
     $                     ZERO, WORK, 1 )
 | 
						|
               TMPII = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
 | 
						|
               TMPIR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
               UHBV = TMPRR + TMPII
 | 
						|
               UHBVI = TMPIR - TMPRI
 | 
						|
               UHAV = DLAPY2( UHAV, UHAVI )
 | 
						|
               UHBV = DLAPY2( UHBV, UHBVI )
 | 
						|
               COND = DLAPY2( UHAV, UHBV )
 | 
						|
               S( KS ) = COND / ( RNRM*LNRM )
 | 
						|
               S( KS+1 ) = S( KS )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Real eigenvalue.
 | 
						|
*
 | 
						|
               RNRM = DNRM2( N, VR( 1, KS ), 1 )
 | 
						|
               LNRM = DNRM2( N, VL( 1, KS ), 1 )
 | 
						|
               CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               UHAV = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
               CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
 | 
						|
     $                     WORK, 1 )
 | 
						|
               UHBV = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
 | 
						|
               COND = DLAPY2( UHAV, UHBV )
 | 
						|
               IF( COND.EQ.ZERO ) THEN
 | 
						|
                  S( KS ) = -ONE
 | 
						|
               ELSE
 | 
						|
                  S( KS ) = COND / ( RNRM*LNRM )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( WANTDF ) THEN
 | 
						|
            IF( N.EQ.1 ) THEN
 | 
						|
               DIF( KS ) = DLAPY2( A( 1, 1 ), B( 1, 1 ) )
 | 
						|
               GO TO 20
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Estimate the reciprocal condition number of the k-th
 | 
						|
*           eigenvectors.
 | 
						|
            IF( PAIR ) THEN
 | 
						|
*
 | 
						|
*              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)).
 | 
						|
*              Compute the eigenvalue(s) at position K.
 | 
						|
*
 | 
						|
               WORK( 1 ) = A( K, K )
 | 
						|
               WORK( 2 ) = A( K+1, K )
 | 
						|
               WORK( 3 ) = A( K, K+1 )
 | 
						|
               WORK( 4 ) = A( K+1, K+1 )
 | 
						|
               WORK( 5 ) = B( K, K )
 | 
						|
               WORK( 6 ) = B( K+1, K )
 | 
						|
               WORK( 7 ) = B( K, K+1 )
 | 
						|
               WORK( 8 ) = B( K+1, K+1 )
 | 
						|
               CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA,
 | 
						|
     $                     DUMMY1( 1 ), ALPHAR, DUMMY( 1 ), ALPHAI )
 | 
						|
               ALPRQT = ONE
 | 
						|
               C1 = TWO*( ALPHAR*ALPHAR+ALPHAI*ALPHAI+BETA*BETA )
 | 
						|
               C2 = FOUR*BETA*BETA*ALPHAI*ALPHAI
 | 
						|
               ROOT1 = C1 + SQRT( C1*C1-4.0D0*C2 )
 | 
						|
               ROOT1 = ROOT1 / TWO
 | 
						|
               ROOT2 = C2 / ROOT1
 | 
						|
               COND = MIN( SQRT( ROOT1 ), SQRT( ROOT2 ) )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Copy the matrix (A, B) to the array WORK and swap the
 | 
						|
*           diagonal block beginning at A(k,k) to the (1,1) position.
 | 
						|
*
 | 
						|
            CALL DLACPY( 'Full', N, N, A, LDA, WORK, N )
 | 
						|
            CALL DLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
 | 
						|
            IFST = K
 | 
						|
            ILST = 1
 | 
						|
*
 | 
						|
            CALL DTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ), N,
 | 
						|
     $                   DUMMY, 1, DUMMY1, 1, IFST, ILST,
 | 
						|
     $                   WORK( N*N*2+1 ), LWORK-2*N*N, IERR )
 | 
						|
*
 | 
						|
            IF( IERR.GT.0 ) THEN
 | 
						|
*
 | 
						|
*              Ill-conditioned problem - swap rejected.
 | 
						|
*
 | 
						|
               DIF( KS ) = ZERO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Reordering successful, solve generalized Sylvester
 | 
						|
*              equation for R and L,
 | 
						|
*                         A22 * R - L * A11 = A12
 | 
						|
*                         B22 * R - L * B11 = B12,
 | 
						|
*              and compute estimate of Difl((A11,B11), (A22, B22)).
 | 
						|
*
 | 
						|
               N1 = 1
 | 
						|
               IF( WORK( 2 ).NE.ZERO )
 | 
						|
     $            N1 = 2
 | 
						|
               N2 = N - N1
 | 
						|
               IF( N2.EQ.0 ) THEN
 | 
						|
                  DIF( KS ) = COND
 | 
						|
               ELSE
 | 
						|
                  I = N*N + 1
 | 
						|
                  IZ = 2*N*N + 1
 | 
						|
                  CALL DTGSYL( 'N', DIFDRI, N2, N1, WORK( N*N1+N1+1 ),
 | 
						|
     $                         N, WORK, N, WORK( N1+1 ), N,
 | 
						|
     $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
 | 
						|
     $                         WORK( N1+I ), N, SCALE, DIF( KS ),
 | 
						|
     $                         WORK( IZ+1 ), LWORK-2*N*N, IWORK, IERR )
 | 
						|
*
 | 
						|
                  IF( PAIR )
 | 
						|
     $               DIF( KS ) = MIN( MAX( ONE, ALPRQT )*DIF( KS ),
 | 
						|
     $                           COND )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            IF( PAIR )
 | 
						|
     $         DIF( KS+1 ) = DIF( KS )
 | 
						|
         END IF
 | 
						|
         IF( PAIR )
 | 
						|
     $      KS = KS + 1
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTGSNA
 | 
						|
*
 | 
						|
      END
 |