311 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGEQPF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGEQPF + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqpf.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqpf.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqpf.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            JPVT( * )
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine CGEQP3.
 | 
						|
*>
 | 
						|
*> CGEQPF computes a QR factorization with column pivoting of a
 | 
						|
*> complex M-by-N matrix A: A*P = Q*R.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A. N >= 0
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the upper triangle of the array contains the
 | 
						|
*>          min(M,N)-by-N upper triangular matrix R; the elements
 | 
						|
*>          below the diagonal, together with the array TAU,
 | 
						|
*>          represent the unitary matrix Q as a product of
 | 
						|
*>          min(m,n) elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] JPVT
 | 
						|
*> \verbatim
 | 
						|
*>          JPVT is INTEGER array, dimension (N)
 | 
						|
*>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 | 
						|
*>          to the front of A*P (a leading column); if JPVT(i) = 0,
 | 
						|
*>          the i-th column of A is a free column.
 | 
						|
*>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | 
						|
*>          was the k-th column of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrix Q is represented as a product of elementary reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(1) H(2) . . . H(n)
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H = I - tau * v * v**H
 | 
						|
*>
 | 
						|
*>  where tau is a complex scalar, and v is a complex vector with
 | 
						|
*>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
 | 
						|
*>
 | 
						|
*>  The matrix P is represented in jpvt as follows: If
 | 
						|
*>     jpvt(j) = i
 | 
						|
*>  then the jth column of P is the ith canonical unit vector.
 | 
						|
*>
 | 
						|
*>  Partial column norm updating strategy modified by
 | 
						|
*>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 | 
						|
*>    University of Zagreb, Croatia.
 | 
						|
*>  -- April 2011                                                      --
 | 
						|
*>  For more details see LAPACK Working Note 176.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            JPVT( * )
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, ITEMP, J, MA, MN, PVT
 | 
						|
      REAL               TEMP, TEMP2, TOL3Z
 | 
						|
      COMPLEX            AII
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEQR2, CLARF, CLARFG, CSWAP, CUNM2R, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CMPLX, CONJG, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SCNRM2, SLAMCH
 | 
						|
      EXTERNAL           ISAMAX, SCNRM2, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGEQPF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      MN = MIN( M, N )
 | 
						|
      TOL3Z = SQRT(SLAMCH('Epsilon'))
 | 
						|
*
 | 
						|
*     Move initial columns up front
 | 
						|
*
 | 
						|
      ITEMP = 1
 | 
						|
      DO 10 I = 1, N
 | 
						|
         IF( JPVT( I ).NE.0 ) THEN
 | 
						|
            IF( I.NE.ITEMP ) THEN
 | 
						|
               CALL CSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
 | 
						|
               JPVT( I ) = JPVT( ITEMP )
 | 
						|
               JPVT( ITEMP ) = I
 | 
						|
            ELSE
 | 
						|
               JPVT( I ) = I
 | 
						|
            END IF
 | 
						|
            ITEMP = ITEMP + 1
 | 
						|
         ELSE
 | 
						|
            JPVT( I ) = I
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
      ITEMP = ITEMP - 1
 | 
						|
*
 | 
						|
*     Compute the QR factorization and update remaining columns
 | 
						|
*
 | 
						|
      IF( ITEMP.GT.0 ) THEN
 | 
						|
         MA = MIN( ITEMP, M )
 | 
						|
         CALL CGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
 | 
						|
         IF( MA.LT.N ) THEN
 | 
						|
            CALL CUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A,
 | 
						|
     $                   LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITEMP.LT.MN ) THEN
 | 
						|
*
 | 
						|
*        Initialize partial column norms. The first n elements of
 | 
						|
*        work store the exact column norms.
 | 
						|
*
 | 
						|
         DO 20 I = ITEMP + 1, N
 | 
						|
            RWORK( I ) = SCNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
 | 
						|
            RWORK( N+I ) = RWORK( I )
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Compute factorization
 | 
						|
*
 | 
						|
         DO 40 I = ITEMP + 1, MN
 | 
						|
*
 | 
						|
*           Determine ith pivot column and swap if necessary
 | 
						|
*
 | 
						|
            PVT = ( I-1 ) + ISAMAX( N-I+1, RWORK( I ), 1 )
 | 
						|
*
 | 
						|
            IF( PVT.NE.I ) THEN
 | 
						|
               CALL CSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
 | 
						|
               ITEMP = JPVT( PVT )
 | 
						|
               JPVT( PVT ) = JPVT( I )
 | 
						|
               JPVT( I ) = ITEMP
 | 
						|
               RWORK( PVT ) = RWORK( I )
 | 
						|
               RWORK( N+PVT ) = RWORK( N+I )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Generate elementary reflector H(i)
 | 
						|
*
 | 
						|
            AII = A( I, I )
 | 
						|
            CALL CLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1,
 | 
						|
     $                   TAU( I ) )
 | 
						|
            A( I, I ) = AII
 | 
						|
*
 | 
						|
            IF( I.LT.N ) THEN
 | 
						|
*
 | 
						|
*              Apply H(i) to A(i:m,i+1:n) from the left
 | 
						|
*
 | 
						|
               AII = A( I, I )
 | 
						|
               A( I, I ) = CMPLX( ONE )
 | 
						|
               CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
 | 
						|
     $                     CONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
 | 
						|
               A( I, I ) = AII
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Update partial column norms
 | 
						|
*
 | 
						|
            DO 30 J = I + 1, N
 | 
						|
               IF( RWORK( J ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*                 NOTE: The following 4 lines follow from the analysis in
 | 
						|
*                 Lapack Working Note 176.
 | 
						|
*
 | 
						|
                  TEMP = ABS( A( I, J ) ) / RWORK( J )
 | 
						|
                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
 | 
						|
                  TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2
 | 
						|
                  IF( TEMP2 .LE. TOL3Z ) THEN
 | 
						|
                     IF( M-I.GT.0 ) THEN
 | 
						|
                        RWORK( J ) = SCNRM2( M-I, A( I+1, J ), 1 )
 | 
						|
                        RWORK( N+J ) = RWORK( J )
 | 
						|
                     ELSE
 | 
						|
                        RWORK( J ) = ZERO
 | 
						|
                        RWORK( N+J ) = ZERO
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     RWORK( J ) = RWORK( J )*SQRT( TEMP )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   30       CONTINUE
 | 
						|
*
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGEQPF
 | 
						|
*
 | 
						|
      END
 |