936 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			936 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CDRVSX
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CDRVSX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
| *                          NIUNIT, NOUNIT, A, LDA, H, HT, W, WT, WTMP, VS,
 | |
| *                          LDVS, VS1, RESULT, WORK, LWORK, RWORK, BWORK,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDVS, LWORK, NIUNIT, NOUNIT, NSIZES,
 | |
| *      $                   NTYPES
 | |
| *       REAL               THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            BWORK( * ), DOTYPE( * )
 | |
| *       INTEGER            ISEED( 4 ), NN( * )
 | |
| *       REAL               RESULT( 17 ), RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), H( LDA, * ), HT( LDA, * ),
 | |
| *      $                   VS( LDVS, * ), VS1( LDVS, * ), W( * ),
 | |
| *      $                   WORK( * ), WT( * ), WTMP( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    CDRVSX checks the nonsymmetric eigenvalue (Schur form) problem
 | |
| *>    expert driver CGEESX.
 | |
| *>
 | |
| *>    CDRVSX uses both test matrices generated randomly depending on
 | |
| *>    data supplied in the calling sequence, as well as on data
 | |
| *>    read from an input file and including precomputed condition
 | |
| *>    numbers to which it compares the ones it computes.
 | |
| *>
 | |
| *>    When CDRVSX is called, a number of matrix "sizes" ("n's") and a
 | |
| *>    number of matrix "types" are specified.  For each size ("n")
 | |
| *>    and each type of matrix, one matrix will be generated and used
 | |
| *>    to test the nonsymmetric eigenroutines.  For each matrix, 15
 | |
| *>    tests will be performed:
 | |
| *>
 | |
| *>    (1)     0 if T is in Schur form, 1/ulp otherwise
 | |
| *>           (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (2)     | A - VS T VS' | / ( n |A| ulp )
 | |
| *>
 | |
| *>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
 | |
| *>      form  (no sorting of eigenvalues).
 | |
| *>
 | |
| *>    (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
 | |
| *>
 | |
| *>    (4)     0     if W are eigenvalues of T
 | |
| *>            1/ulp otherwise
 | |
| *>            (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (5)     0     if T(with VS) = T(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            (no sorting of eigenvalues)
 | |
| *>
 | |
| *>    (7)     0 if T is in Schur form, 1/ulp otherwise
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (8)     | A - VS T VS' | / ( n |A| ulp )
 | |
| *>
 | |
| *>      Here VS is the matrix of Schur eigenvectors, and T is in Schur
 | |
| *>      form  (with sorting of eigenvalues).
 | |
| *>
 | |
| *>    (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
 | |
| *>
 | |
| *>    (10)    0     if W are eigenvalues of T
 | |
| *>            1/ulp otherwise
 | |
| *>            If workspace sufficient, also compare W with and
 | |
| *>            without reciprocal condition numbers
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (11)    0     if T(with VS) = T(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            If workspace sufficient, also compare T with and without
 | |
| *>            reciprocal condition numbers
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),
 | |
| *>            1/ulp otherwise
 | |
| *>            If workspace sufficient, also compare VS with and without
 | |
| *>            reciprocal condition numbers
 | |
| *>            (with sorting of eigenvalues)
 | |
| *>
 | |
| *>    (13)    if sorting worked and SDIM is the number of
 | |
| *>            eigenvalues which were SELECTed
 | |
| *>            If workspace sufficient, also compare SDIM with and
 | |
| *>            without reciprocal condition numbers
 | |
| *>
 | |
| *>    (14)    if RCONDE the same no matter if VS and/or RCONDV computed
 | |
| *>
 | |
| *>    (15)    if RCONDV the same no matter if VS and/or RCONDE computed
 | |
| *>
 | |
| *>    The "sizes" are specified by an array NN(1:NSIZES); the value of
 | |
| *>    each element NN(j) specifies one size.
 | |
| *>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | |
| *>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | |
| *>    Currently, the list of possible types is:
 | |
| *>
 | |
| *>    (1)  The zero matrix.
 | |
| *>    (2)  The identity matrix.
 | |
| *>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
 | |
| *>
 | |
| *>    (4)  A diagonal matrix with evenly spaced entries
 | |
| *>         1, ..., ULP  and random complex angles.
 | |
| *>         (ULP = (first number larger than 1) - 1 )
 | |
| *>    (5)  A diagonal matrix with geometrically spaced entries
 | |
| *>         1, ..., ULP  and random complex angles.
 | |
| *>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | |
| *>         and random complex angles.
 | |
| *>
 | |
| *>    (7)  Same as (4), but multiplied by a constant near
 | |
| *>         the overflow threshold
 | |
| *>    (8)  Same as (4), but multiplied by a constant near
 | |
| *>         the underflow threshold
 | |
| *>
 | |
| *>    (9)  A matrix of the form  U' T U, where U is unitary and
 | |
| *>         T has evenly spaced entries 1, ..., ULP with random
 | |
| *>         complex angles on the diagonal and random O(1) entries in
 | |
| *>         the upper triangle.
 | |
| *>
 | |
| *>    (10) A matrix of the form  U' T U, where U is unitary and
 | |
| *>         T has geometrically spaced entries 1, ..., ULP with random
 | |
| *>         complex angles on the diagonal and random O(1) entries in
 | |
| *>         the upper triangle.
 | |
| *>
 | |
| *>    (11) A matrix of the form  U' T U, where U is orthogonal and
 | |
| *>         T has "clustered" entries 1, ULP,..., ULP with random
 | |
| *>         complex angles on the diagonal and random O(1) entries in
 | |
| *>         the upper triangle.
 | |
| *>
 | |
| *>    (12) A matrix of the form  U' T U, where U is unitary and
 | |
| *>         T has complex eigenvalues randomly chosen from
 | |
| *>         ULP < |z| < 1   and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (13) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
 | |
| *>         with random complex angles on the diagonal and random O(1)
 | |
| *>         entries in the upper triangle.
 | |
| *>
 | |
| *>    (14) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has geometrically spaced entries
 | |
| *>         1, ..., ULP with random complex angles on the diagonal
 | |
| *>         and random O(1) entries in the upper triangle.
 | |
| *>
 | |
| *>    (15) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
 | |
| *>         with random complex angles on the diagonal and random O(1)
 | |
| *>         entries in the upper triangle.
 | |
| *>
 | |
| *>    (16) A matrix of the form  X' T X, where X has condition
 | |
| *>         SQRT( ULP ) and T has complex eigenvalues randomly chosen
 | |
| *>         from ULP < |z| < 1 and random O(1) entries in the upper
 | |
| *>         triangle.
 | |
| *>
 | |
| *>    (17) Same as (16), but multiplied by a constant
 | |
| *>         near the overflow threshold
 | |
| *>    (18) Same as (16), but multiplied by a constant
 | |
| *>         near the underflow threshold
 | |
| *>
 | |
| *>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
 | |
| *>         If N is at least 4, all entries in first two rows and last
 | |
| *>         row, and first column and last two columns are zero.
 | |
| *>    (20) Same as (19), but multiplied by a constant
 | |
| *>         near the overflow threshold
 | |
| *>    (21) Same as (19), but multiplied by a constant
 | |
| *>         near the underflow threshold
 | |
| *>
 | |
| *>    In addition, an input file will be read from logical unit number
 | |
| *>    NIUNIT. The file contains matrices along with precomputed
 | |
| *>    eigenvalues and reciprocal condition numbers for the eigenvalue
 | |
| *>    average and right invariant subspace. For these matrices, in
 | |
| *>    addition to tests (1) to (15) we will compute the following two
 | |
| *>    tests:
 | |
| *>
 | |
| *>   (16)  |RCONDE - RCDEIN| / cond(RCONDE)
 | |
| *>
 | |
| *>      RCONDE is the reciprocal average eigenvalue condition number
 | |
| *>      computed by CGEESX and RCDEIN (the precomputed true value)
 | |
| *>      is supplied as input.  cond(RCONDE) is the condition number
 | |
| *>      of RCONDE, and takes errors in computing RCONDE into account,
 | |
| *>      so that the resulting quantity should be O(ULP). cond(RCONDE)
 | |
| *>      is essentially given by norm(A)/RCONDV.
 | |
| *>
 | |
| *>   (17)  |RCONDV - RCDVIN| / cond(RCONDV)
 | |
| *>
 | |
| *>      RCONDV is the reciprocal right invariant subspace condition
 | |
| *>      number computed by CGEESX and RCDVIN (the precomputed true
 | |
| *>      value) is supplied as input. cond(RCONDV) is the condition
 | |
| *>      number of RCONDV, and takes errors in computing RCONDV into
 | |
| *>      account, so that the resulting quantity should be O(ULP).
 | |
| *>      cond(RCONDV) is essentially given by norm(A)/RCONDE.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NSIZES
 | |
| *> \verbatim
 | |
| *>          NSIZES is INTEGER
 | |
| *>          The number of sizes of matrices to use.  NSIZES must be at
 | |
| *>          least zero. If it is zero, no randomly generated matrices
 | |
| *>          are tested, but any test matrices read from NIUNIT will be
 | |
| *>          tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER array, dimension (NSIZES)
 | |
| *>          An array containing the sizes to be used for the matrices.
 | |
| *>          Zero values will be skipped.  The values must be at least
 | |
| *>          zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NTYPES
 | |
| *> \verbatim
 | |
| *>          NTYPES is INTEGER
 | |
| *>          The number of elements in DOTYPE. NTYPES must be at least
 | |
| *>          zero. If it is zero, no randomly generated test matrices
 | |
| *>          are tested, but and test matrices read from NIUNIT will be
 | |
| *>          tested. If it is MAXTYP+1 and NSIZES is 1, then an
 | |
| *>          additional type, MAXTYP+1 is defined, which is to use
 | |
| *>          whatever matrix is in A.  This is only useful if
 | |
| *>          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | |
| *>          matrix of that size and of type j will be generated.
 | |
| *>          If NTYPES is smaller than the maximum number of types
 | |
| *>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | |
| *>          MAXTYP will not be generated.  If NTYPES is larger
 | |
| *>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | |
| *>          will be ignored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          On entry ISEED specifies the seed of the random number
 | |
| *>          generator. The array elements should be between 0 and 4095;
 | |
| *>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | |
| *>          be odd.  The random number generator uses a linear
 | |
| *>          congruential sequence limited to small integers, and so
 | |
| *>          should produce machine independent random numbers. The
 | |
| *>          values of ISEED are changed on exit, and can be used in the
 | |
| *>          next call to CDRVSX to continue the same random number
 | |
| *>          sequence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is REAL
 | |
| *>          A test will count as "failed" if the "error", computed as
 | |
| *>          described above, exceeds THRESH.  Note that the error
 | |
| *>          is scaled to be O(1), so THRESH should be a reasonably
 | |
| *>          small multiple of 1, e.g., 10 or 100.  In particular,
 | |
| *>          it should not depend on the precision (single vs. double)
 | |
| *>          or the size of the matrix.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NIUNIT
 | |
| *> \verbatim
 | |
| *>          NIUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for reading in the data file of
 | |
| *>          problems to solve.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUNIT
 | |
| *> \verbatim
 | |
| *>          NOUNIT is INTEGER
 | |
| *>          The FORTRAN unit number for printing out error messages
 | |
| *>          (e.g., if a routine returns INFO not equal to 0.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          Used to hold the matrix whose eigenvalues are to be
 | |
| *>          computed.  On exit, A contains the last matrix actually used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of A, and H. LDA must be at
 | |
| *>          least 1 and at least max( NN ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] H
 | |
| *> \verbatim
 | |
| *>          H is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          Another copy of the test matrix A, modified by CGEESX.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] HT
 | |
| *> \verbatim
 | |
| *>          HT is COMPLEX array, dimension (LDA, max(NN))
 | |
| *>          Yet another copy of the test matrix A, modified by CGEESX.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is COMPLEX array, dimension (max(NN))
 | |
| *>          The computed eigenvalues of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WT
 | |
| *> \verbatim
 | |
| *>          WT is COMPLEX array, dimension (max(NN))
 | |
| *>          Like W, this array contains the eigenvalues of A,
 | |
| *>          but those computed when CGEESX only computes a partial
 | |
| *>          eigendecomposition, i.e. not Schur vectors
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WTMP
 | |
| *> \verbatim
 | |
| *>          WTMP is COMPLEX array, dimension (max(NN))
 | |
| *>          More temporary storage for eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VS
 | |
| *> \verbatim
 | |
| *>          VS is COMPLEX array, dimension (LDVS, max(NN))
 | |
| *>          VS holds the computed Schur vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVS
 | |
| *> \verbatim
 | |
| *>          LDVS is INTEGER
 | |
| *>          Leading dimension of VS. Must be at least max(1,max(NN)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VS1
 | |
| *> \verbatim
 | |
| *>          VS1 is COMPLEX array, dimension (LDVS, max(NN))
 | |
| *>          VS1 holds another copy of the computed Schur vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (17)
 | |
| *>          The values computed by the 17 tests described above.
 | |
| *>          The values are currently limited to 1/ulp, to avoid overflow.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The number of entries in WORK.  This must be at least
 | |
| *>          max(1,2*NN(j)**2) for all j.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWORK
 | |
| *> \verbatim
 | |
| *>          BWORK is LOGICAL array, dimension (max(NN))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          If 0,  successful exit.
 | |
| *>            <0,  input parameter -INFO is incorrect
 | |
| *>            >0,  CLATMR, CLATMS, CLATME or CGET24 returned an error
 | |
| *>                 code and INFO is its absolute value
 | |
| *>
 | |
| *>-----------------------------------------------------------------------
 | |
| *>
 | |
| *>     Some Local Variables and Parameters:
 | |
| *>     ---- ----- --------- --- ----------
 | |
| *>     ZERO, ONE       Real 0 and 1.
 | |
| *>     MAXTYP          The number of types defined.
 | |
| *>     NMAX            Largest value in NN.
 | |
| *>     NERRS           The number of tests which have exceeded THRESH
 | |
| *>     COND, CONDS,
 | |
| *>     IMODE           Values to be passed to the matrix generators.
 | |
| *>     ANORM           Norm of A; passed to matrix generators.
 | |
| *>
 | |
| *>     OVFL, UNFL      Overflow and underflow thresholds.
 | |
| *>     ULP, ULPINV     Finest relative precision and its inverse.
 | |
| *>     RTULP, RTULPI   Square roots of the previous 4 values.
 | |
| *>             The following four arrays decode JTYPE:
 | |
| *>     KTYPE(j)        The general type (1-10) for type "j".
 | |
| *>     KMODE(j)        The MODE value to be passed to the matrix
 | |
| *>                     generator for type "j".
 | |
| *>     KMAGN(j)        The order of magnitude ( O(1),
 | |
| *>                     O(overflow^(1/2) ), O(underflow^(1/2) )
 | |
| *>     KCONDS(j)       Selectw whether CONDS is to be 1 or
 | |
| *>                     1/sqrt(ulp).  (0 means irrelevant.)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CDRVSX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | |
|      $                   NIUNIT, NOUNIT, A, LDA, H, HT, W, WT, WTMP, VS,
 | |
|      $                   LDVS, VS1, RESULT, WORK, LWORK, RWORK, BWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDVS, LWORK, NIUNIT, NOUNIT, NSIZES,
 | |
|      $                   NTYPES
 | |
|       REAL               THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            BWORK( * ), DOTYPE( * )
 | |
|       INTEGER            ISEED( 4 ), NN( * )
 | |
|       REAL               RESULT( 17 ), RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), H( LDA, * ), HT( LDA, * ),
 | |
|      $                   VS( LDVS, * ), VS1( LDVS, * ), W( * ),
 | |
|      $                   WORK( * ), WT( * ), WTMP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CZERO
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       INTEGER            MAXTYP
 | |
|       PARAMETER          ( MAXTYP = 21 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BADNN
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IINFO, IMODE, ISRT, ITYPE, IWK, J, JCOL,
 | |
|      $                   JSIZE, JTYPE, MTYPES, N, NERRS, NFAIL,
 | |
|      $                   NMAX, NNWORK, NSLCT, NTEST, NTESTF, NTESTT
 | |
|       REAL               ANORM, COND, CONDS, OVFL, RCDEIN, RCDVIN,
 | |
|      $                   RTULP, RTULPI, ULP, ULPINV, UNFL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), ISLCT( 20 ),
 | |
|      $                   KCONDS( MAXTYP ), KMAGN( MAXTYP ),
 | |
|      $                   KMODE( MAXTYP ), KTYPE( MAXTYP )
 | |
| *     ..
 | |
| *     .. Arrays in Common ..
 | |
|       LOGICAL            SELVAL( 20 )
 | |
|       REAL               SELWI( 20 ), SELWR( 20 )
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       INTEGER            SELDIM, SELOPT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGET24, CLATME, CLATMR, CLATMS, CLASET, SLABAD,
 | |
|      $                   SLASUM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
 | |
|       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
 | |
|      $                   3, 1, 2, 3 /
 | |
|       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
 | |
|      $                   1, 5, 5, 5, 4, 3, 1 /
 | |
|       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Complex precision'
 | |
|       PATH( 2: 3 ) = 'SX'
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       NTESTT = 0
 | |
|       NTESTF = 0
 | |
|       INFO = 0
 | |
| *
 | |
| *     Important constants
 | |
| *
 | |
|       BADNN = .FALSE.
 | |
| *
 | |
| *     8 is the largest dimension in the input file of precomputed
 | |
| *     problems
 | |
| *
 | |
|       NMAX = 8
 | |
|       DO 10 J = 1, NSIZES
 | |
|          NMAX = MAX( NMAX, NN( J ) )
 | |
|          IF( NN( J ).LT.0 )
 | |
|      $      BADNN = .TRUE.
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Check for errors
 | |
| *
 | |
|       IF( NSIZES.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( BADNN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NTYPES.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( THRESH.LT.ZERO ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( NIUNIT.LE.0 ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( NOUNIT.LE.0 ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
 | |
|          INFO = -20
 | |
|       ELSE IF( MAX( 3*NMAX, 2*NMAX**2 ).GT.LWORK ) THEN
 | |
|          INFO = -24
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CDRVSX', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     If nothing to do check on NIUNIT
 | |
| *
 | |
|       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | |
|      $   GO TO 150
 | |
| *
 | |
| *     More Important constants
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       CALL SLABAD( UNFL, OVFL )
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
|       ULPINV = ONE / ULP
 | |
|       RTULP = SQRT( ULP )
 | |
|       RTULPI = ONE / RTULP
 | |
| *
 | |
| *     Loop over sizes, types
 | |
| *
 | |
|       NERRS = 0
 | |
| *
 | |
|       DO 140 JSIZE = 1, NSIZES
 | |
|          N = NN( JSIZE )
 | |
|          IF( NSIZES.NE.1 ) THEN
 | |
|             MTYPES = MIN( MAXTYP, NTYPES )
 | |
|          ELSE
 | |
|             MTYPES = MIN( MAXTYP+1, NTYPES )
 | |
|          END IF
 | |
| *
 | |
|          DO 130 JTYPE = 1, MTYPES
 | |
|             IF( .NOT.DOTYPE( JTYPE ) )
 | |
|      $         GO TO 130
 | |
| *
 | |
| *           Save ISEED in case of an error.
 | |
| *
 | |
|             DO 20 J = 1, 4
 | |
|                IOLDSD( J ) = ISEED( J )
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Compute "A"
 | |
| *
 | |
| *           Control parameters:
 | |
| *
 | |
| *           KMAGN  KCONDS  KMODE        KTYPE
 | |
| *       =1  O(1)   1       clustered 1  zero
 | |
| *       =2  large  large   clustered 2  identity
 | |
| *       =3  small          exponential  Jordan
 | |
| *       =4                 arithmetic   diagonal, (w/ eigenvalues)
 | |
| *       =5                 random log   symmetric, w/ eigenvalues
 | |
| *       =6                 random       general, w/ eigenvalues
 | |
| *       =7                              random diagonal
 | |
| *       =8                              random symmetric
 | |
| *       =9                              random general
 | |
| *       =10                             random triangular
 | |
| *
 | |
|             IF( MTYPES.GT.MAXTYP )
 | |
|      $         GO TO 90
 | |
| *
 | |
|             ITYPE = KTYPE( JTYPE )
 | |
|             IMODE = KMODE( JTYPE )
 | |
| *
 | |
| *           Compute norm
 | |
| *
 | |
|             GO TO ( 30, 40, 50 )KMAGN( JTYPE )
 | |
| *
 | |
|    30       CONTINUE
 | |
|             ANORM = ONE
 | |
|             GO TO 60
 | |
| *
 | |
|    40       CONTINUE
 | |
|             ANORM = OVFL*ULP
 | |
|             GO TO 60
 | |
| *
 | |
|    50       CONTINUE
 | |
|             ANORM = UNFL*ULPINV
 | |
|             GO TO 60
 | |
| *
 | |
|    60       CONTINUE
 | |
| *
 | |
|             CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
 | |
|             IINFO = 0
 | |
|             COND = ULPINV
 | |
| *
 | |
| *           Special Matrices -- Identity & Jordan block
 | |
| *
 | |
|             IF( ITYPE.EQ.1 ) THEN
 | |
| *
 | |
| *              Zero
 | |
| *
 | |
|                IINFO = 0
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *              Identity
 | |
| *
 | |
|                DO 70 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|    70          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *              Jordan Block
 | |
| *
 | |
|                DO 80 JCOL = 1, N
 | |
|                   A( JCOL, JCOL ) = ANORM
 | |
|                   IF( JCOL.GT.1 )
 | |
|      $               A( JCOL, JCOL-1 ) = CONE
 | |
|    80          CONTINUE
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.4 ) THEN
 | |
| *
 | |
| *              Diagonal Matrix, [Eigen]values Specified
 | |
| *
 | |
|                CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
 | |
|      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.5 ) THEN
 | |
| *
 | |
| *              Symmetric, eigenvalues specified
 | |
| *
 | |
|                CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
 | |
|      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
 | |
|      $                      IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.6 ) THEN
 | |
| *
 | |
| *              General, eigenvalues specified
 | |
| *
 | |
|                IF( KCONDS( JTYPE ).EQ.1 ) THEN
 | |
|                   CONDS = ONE
 | |
|                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
 | |
|                   CONDS = RTULPI
 | |
|                ELSE
 | |
|                   CONDS = ZERO
 | |
|                END IF
 | |
| *
 | |
|                CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
 | |
|      $                      'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
 | |
|      $                      A, LDA, WORK( 2*N+1 ), IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.7 ) THEN
 | |
| *
 | |
| *              Diagonal, random eigenvalues
 | |
| *
 | |
|                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.8 ) THEN
 | |
| *
 | |
| *              Symmetric, random eigenvalues
 | |
| *
 | |
|                CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.9 ) THEN
 | |
| *
 | |
| *              General, random eigenvalues
 | |
| *
 | |
|                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
 | |
|                IF( N.GE.4 ) THEN
 | |
|                   CALL CLASET( 'Full', 2, N, CZERO, CZERO, A, LDA )
 | |
|                   CALL CLASET( 'Full', N-3, 1, CZERO, CZERO, A( 3, 1 ),
 | |
|      $                         LDA )
 | |
|                   CALL CLASET( 'Full', N-3, 2, CZERO, CZERO,
 | |
|      $                         A( 3, N-1 ), LDA )
 | |
|                   CALL CLASET( 'Full', 1, N, CZERO, CZERO, A( N, 1 ),
 | |
|      $                         LDA )
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( ITYPE.EQ.10 ) THEN
 | |
| *
 | |
| *              Triangular, random eigenvalues
 | |
| *
 | |
|                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
 | |
|      $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | |
|      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
 | |
|      $                      ZERO, ANORM, 'NO', A, LDA, IDUMMA, IINFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                IINFO = 1
 | |
|             END IF
 | |
| *
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                WRITE( NOUNIT, FMT = 9991 )'Generator', IINFO, N, JTYPE,
 | |
|      $            IOLDSD
 | |
|                INFO = ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           Test for minimal and generous workspace
 | |
| *
 | |
|             DO 120 IWK = 1, 2
 | |
|                IF( IWK.EQ.1 ) THEN
 | |
|                   NNWORK = 2*N
 | |
|                ELSE
 | |
|                   NNWORK = MAX( 2*N, N*( N+1 ) / 2 )
 | |
|                END IF
 | |
|                NNWORK = MAX( NNWORK, 1 )
 | |
| *
 | |
|                CALL CGET24( .FALSE., JTYPE, THRESH, IOLDSD, NOUNIT, N,
 | |
|      $                      A, LDA, H, HT, W, WT, WTMP, VS, LDVS, VS1,
 | |
|      $                      RCDEIN, RCDVIN, NSLCT, ISLCT, 0, RESULT,
 | |
|      $                      WORK, NNWORK, RWORK, BWORK, INFO )
 | |
| *
 | |
| *              Check for RESULT(j) > THRESH
 | |
| *
 | |
|                NTEST = 0
 | |
|                NFAIL = 0
 | |
|                DO 100 J = 1, 15
 | |
|                   IF( RESULT( J ).GE.ZERO )
 | |
|      $               NTEST = NTEST + 1
 | |
|                   IF( RESULT( J ).GE.THRESH )
 | |
|      $               NFAIL = NFAIL + 1
 | |
|   100          CONTINUE
 | |
| *
 | |
|                IF( NFAIL.GT.0 )
 | |
|      $            NTESTF = NTESTF + 1
 | |
|                IF( NTESTF.EQ.1 ) THEN
 | |
|                   WRITE( NOUNIT, FMT = 9999 )PATH
 | |
|                   WRITE( NOUNIT, FMT = 9998 )
 | |
|                   WRITE( NOUNIT, FMT = 9997 )
 | |
|                   WRITE( NOUNIT, FMT = 9996 )
 | |
|                   WRITE( NOUNIT, FMT = 9995 )THRESH
 | |
|                   WRITE( NOUNIT, FMT = 9994 )
 | |
|                   NTESTF = 2
 | |
|                END IF
 | |
| *
 | |
|                DO 110 J = 1, 15
 | |
|                   IF( RESULT( J ).GE.THRESH ) THEN
 | |
|                      WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
 | |
|      $                  J, RESULT( J )
 | |
|                   END IF
 | |
|   110          CONTINUE
 | |
| *
 | |
|                NERRS = NERRS + NFAIL
 | |
|                NTESTT = NTESTT + NTEST
 | |
| *
 | |
|   120       CONTINUE
 | |
|   130    CONTINUE
 | |
|   140 CONTINUE
 | |
| *
 | |
|   150 CONTINUE
 | |
| *
 | |
| *     Read in data from file to check accuracy of condition estimation
 | |
| *     Read input data until N=0
 | |
| *
 | |
|       JTYPE = 0
 | |
|   160 CONTINUE
 | |
|       READ( NIUNIT, FMT = *, END = 200 )N, NSLCT, ISRT
 | |
|       IF( N.EQ.0 )
 | |
|      $   GO TO 200
 | |
|       JTYPE = JTYPE + 1
 | |
|       ISEED( 1 ) = JTYPE
 | |
|       READ( NIUNIT, FMT = * )( ISLCT( I ), I = 1, NSLCT )
 | |
|       DO 170 I = 1, N
 | |
|          READ( NIUNIT, FMT = * )( A( I, J ), J = 1, N )
 | |
|   170 CONTINUE
 | |
|       READ( NIUNIT, FMT = * )RCDEIN, RCDVIN
 | |
| *
 | |
|       CALL CGET24( .TRUE., 22, THRESH, ISEED, NOUNIT, N, A, LDA, H, HT,
 | |
|      $             W, WT, WTMP, VS, LDVS, VS1, RCDEIN, RCDVIN, NSLCT,
 | |
|      $             ISLCT, ISRT, RESULT, WORK, LWORK, RWORK, BWORK,
 | |
|      $             INFO )
 | |
| *
 | |
| *     Check for RESULT(j) > THRESH
 | |
| *
 | |
|       NTEST = 0
 | |
|       NFAIL = 0
 | |
|       DO 180 J = 1, 17
 | |
|          IF( RESULT( J ).GE.ZERO )
 | |
|      $      NTEST = NTEST + 1
 | |
|          IF( RESULT( J ).GE.THRESH )
 | |
|      $      NFAIL = NFAIL + 1
 | |
|   180 CONTINUE
 | |
| *
 | |
|       IF( NFAIL.GT.0 )
 | |
|      $   NTESTF = NTESTF + 1
 | |
|       IF( NTESTF.EQ.1 ) THEN
 | |
|          WRITE( NOUNIT, FMT = 9999 )PATH
 | |
|          WRITE( NOUNIT, FMT = 9998 )
 | |
|          WRITE( NOUNIT, FMT = 9997 )
 | |
|          WRITE( NOUNIT, FMT = 9996 )
 | |
|          WRITE( NOUNIT, FMT = 9995 )THRESH
 | |
|          WRITE( NOUNIT, FMT = 9994 )
 | |
|          NTESTF = 2
 | |
|       END IF
 | |
|       DO 190 J = 1, 17
 | |
|          IF( RESULT( J ).GE.THRESH ) THEN
 | |
|             WRITE( NOUNIT, FMT = 9992 )N, JTYPE, J, RESULT( J )
 | |
|          END IF
 | |
|   190 CONTINUE
 | |
| *
 | |
|       NERRS = NERRS + NFAIL
 | |
|       NTESTT = NTESTT + NTEST
 | |
|       GO TO 160
 | |
|   200 CONTINUE
 | |
| *
 | |
| *     Summary
 | |
| *
 | |
|       CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
 | |
| *
 | |
|  9999 FORMAT( / 1X, A3, ' -- Complex Schur Form Decomposition Expert ',
 | |
|      $      'Driver', / ' Matrix types (see CDRVSX for details): ' )
 | |
| *
 | |
|  9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
 | |
|      $      '           ', '  5=Diagonal: geometr. spaced entries.',
 | |
|      $      / '  2=Identity matrix.                    ', '  6=Diagona',
 | |
|      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
 | |
|      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
 | |
|      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
 | |
|      $      'mall, evenly spaced.' )
 | |
|  9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
 | |
|      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
 | |
|      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
 | |
|      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
 | |
|      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
 | |
|      $      'lex ', / ' 12=Well-cond., random complex ', '         ',
 | |
|      $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
 | |
|      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
 | |
|      $      ' complx ' )
 | |
|  9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
 | |
|      $      'with small random entries.', / ' 20=Matrix with large ran',
 | |
|      $      'dom entries.   ', / )
 | |
|  9995 FORMAT( ' Tests performed with test threshold =', F8.2,
 | |
|      $      / ' ( A denotes A on input and T denotes A on output)',
 | |
|      $      / / ' 1 = 0 if T in Schur form (no sort), ',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
 | |
|      $      / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ',
 | |
|      $      / ' 4 = 0 if W are eigenvalues of T (no sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 5 = 0 if T same no matter if VS computed (no sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 6 = 0 if W same no matter if VS computed (no sort)',
 | |
|      $      ',  1/ulp otherwise' )
 | |
|  9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', '  1/ulp otherwise',
 | |
|      $      / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
 | |
|      $      / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
 | |
|      $      / ' 10 = 0 if W are eigenvalues of T (sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 11 = 0 if T same no matter what else computed (sort),',
 | |
|      $      '  1/ulp otherwise', /
 | |
|      $      ' 12 = 0 if W same no matter what else computed ',
 | |
|      $      '(sort), 1/ulp otherwise', /
 | |
|      $      ' 13 = 0 if sorting succesful, 1/ulp otherwise',
 | |
|      $      / ' 14 = 0 if RCONDE same no matter what else computed,',
 | |
|      $      ' 1/ulp otherwise', /
 | |
|      $      ' 15 = 0 if RCONDv same no matter what else computed,',
 | |
|      $      ' 1/ulp otherwise', /
 | |
|      $      ' 16 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),',
 | |
|      $      / ' 17 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),' )
 | |
|  9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
 | |
|      $      ' type ', I2, ', test(', I2, ')=', G10.3 )
 | |
|  9992 FORMAT( ' N=', I5, ', input example =', I3, ',  test(', I2, ')=',
 | |
|      $      G10.3 )
 | |
|  9991 FORMAT( ' CDRVSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | |
|      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CDRVSX
 | |
| *
 | |
|       END
 |