191 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGERQ2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgerq2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgerq2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgerq2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGERQ2( M, N, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGERQ2 computes an RQ factorization of a real m by n matrix A:
 | 
						|
*> A = R * Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the m by n matrix A.
 | 
						|
*>          On exit, if m <= n, the upper triangle of the subarray
 | 
						|
*>          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
 | 
						|
*>          if m >= n, the elements on and above the (m-n)-th subdiagonal
 | 
						|
*>          contain the m by n upper trapezoidal matrix R; the remaining
 | 
						|
*>          elements, with the array TAU, represent the orthogonal matrix
 | 
						|
*>          Q as a product of elementary reflectors (see Further
 | 
						|
*>          Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors (see Further
 | 
						|
*>          Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrix Q is represented as a product of elementary reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H(i) = I - tau * v * v**T
 | 
						|
*>
 | 
						|
*>  where tau is a real scalar, and v is a real vector with
 | 
						|
*>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
 | 
						|
*>  A(m-k+i,1:n-k+i-1), and tau in TAU(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGERQ2( M, N, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, K
 | 
						|
      REAL               AII
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLARF, SLARFG, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGERQ2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      K = MIN( M, N )
 | 
						|
*
 | 
						|
      DO 10 I = K, 1, -1
 | 
						|
*
 | 
						|
*        Generate elementary reflector H(i) to annihilate
 | 
						|
*        A(m-k+i,1:n-k+i-1)
 | 
						|
*
 | 
						|
         CALL SLARFG( N-K+I, A( M-K+I, N-K+I ), A( M-K+I, 1 ), LDA,
 | 
						|
     $                TAU( I ) )
 | 
						|
*
 | 
						|
*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
 | 
						|
*
 | 
						|
         AII = A( M-K+I, N-K+I )
 | 
						|
         A( M-K+I, N-K+I ) = ONE
 | 
						|
         CALL SLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
 | 
						|
     $               TAU( I ), A, LDA, WORK )
 | 
						|
         A( M-K+I, N-K+I ) = AII
 | 
						|
   10 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGERQ2
 | 
						|
*
 | 
						|
      END
 |