349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAROR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          INIT, SIDE
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       COMPLEX            A( LDA, * ), X( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    CLAROR pre- or post-multiplies an M by N matrix A by a random
 | 
						|
*>    unitary matrix U, overwriting A. A may optionally be
 | 
						|
*>    initialized to the identity matrix before multiplying by U.
 | 
						|
*>    U is generated using the method of G.W. Stewart
 | 
						|
*>    ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
 | 
						|
*>    (BLAS-2 version)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>           SIDE specifies whether A is multiplied on the left or right
 | 
						|
*>           by U.
 | 
						|
*>       SIDE = 'L'   Multiply A on the left (premultiply) by U
 | 
						|
*>       SIDE = 'R'   Multiply A on the right (postmultiply) by UC>       SIDE = 'C'   Multiply A on the left by U and the right by UC>       SIDE = 'T'   Multiply A on the left by U and the right by U'
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INIT
 | 
						|
*> \verbatim
 | 
						|
*>          INIT is CHARACTER*1
 | 
						|
*>           INIT specifies whether or not A should be initialized to
 | 
						|
*>           the identity matrix.
 | 
						|
*>              INIT = 'I'   Initialize A to (a section of) the
 | 
						|
*>                           identity matrix before applying U.
 | 
						|
*>              INIT = 'N'   No initialization.  Apply U to the
 | 
						|
*>                           input matrix A.
 | 
						|
*>
 | 
						|
*>           INIT = 'I' may be used to generate square (i.e., unitary)
 | 
						|
*>           or rectangular orthogonal matrices (orthogonality being
 | 
						|
*>           in the sense of CDOTC):
 | 
						|
*>
 | 
						|
*>           For square matrices, M=N, and SIDE many be either 'L' or
 | 
						|
*>           'R'; the rows will be orthogonal to each other, as will the
 | 
						|
*>           columns.
 | 
						|
*>           For rectangular matrices where M < N, SIDE = 'R' will
 | 
						|
*>           produce a dense matrix whose rows will be orthogonal and
 | 
						|
*>           whose columns will not, while SIDE = 'L' will produce a
 | 
						|
*>           matrix whose rows will be orthogonal, and whose first M
 | 
						|
*>           columns will be orthogonal, the remaining columns being
 | 
						|
*>           zero.
 | 
						|
*>           For matrices where M > N, just use the previous
 | 
						|
*>           explaination, interchanging 'L' and 'R' and "rows" and
 | 
						|
*>           "columns".
 | 
						|
*>
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           Number of rows of A. Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           Number of columns of A. Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension ( LDA, N )
 | 
						|
*>           Input and output array. Overwritten by U A ( if SIDE = 'L' )
 | 
						|
*>           or by A U ( if SIDE = 'R' )
 | 
						|
*>           or by U A U* ( if SIDE = 'C')
 | 
						|
*>           or by U A U' ( if SIDE = 'T') on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           Leading dimension of A. Must be at least MAX ( 1, M ).
 | 
						|
*>           Not modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension ( 4 )
 | 
						|
*>           On entry ISEED specifies the seed of the random number
 | 
						|
*>           generator. The array elements should be between 0 and 4095;
 | 
						|
*>           if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>           be odd.  The random number generator uses a linear
 | 
						|
*>           congruential sequence limited to small integers, and so
 | 
						|
*>           should produce machine independent random numbers. The
 | 
						|
*>           values of ISEED are changed on exit, and can be used in the
 | 
						|
*>           next call to CLAROR to continue the same random number
 | 
						|
*>           sequence.
 | 
						|
*>           Modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension ( 3*MAX( M, N ) )
 | 
						|
*>           Workspace. Of length:
 | 
						|
*>               2*M + N if SIDE = 'L',
 | 
						|
*>               2*N + M if SIDE = 'R',
 | 
						|
*>               3*N     if SIDE = 'C' or 'T'.
 | 
						|
*>           Modified.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>           An error flag.  It is set to:
 | 
						|
*>            0  if no error.
 | 
						|
*>            1  if CLARND returned a bad random number (installation
 | 
						|
*>               problem)
 | 
						|
*>           -1  if SIDE is not L, R, C, or T.
 | 
						|
*>           -3  if M is negative.
 | 
						|
*>           -4  if N is negative or if SIDE is C or T and N is not equal
 | 
						|
*>               to M.
 | 
						|
*>           -6  if LDA is less than M.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_matgen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          INIT, SIDE
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      COMPLEX            A( LDA, * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TOOSML
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
 | 
						|
     $                   TOOSML = 1.0E-20 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
 | 
						|
      REAL               FACTOR, XABS, XNORM
 | 
						|
      COMPLEX            CSIGN, XNORMS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SCNRM2
 | 
						|
      COMPLEX            CLARND
 | 
						|
      EXTERNAL           LSAME, SCNRM2, CLARND
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CGERC, CLACGV, CLASET, CSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CMPLX, CONJG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.EQ.0 .OR. M.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      ITYPE = 0
 | 
						|
      IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
         ITYPE = 1
 | 
						|
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
         ITYPE = 2
 | 
						|
      ELSE IF( LSAME( SIDE, 'C' ) ) THEN
 | 
						|
         ITYPE = 3
 | 
						|
      ELSE IF( LSAME( SIDE, 'T' ) ) THEN
 | 
						|
         ITYPE = 4
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check for argument errors.
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.M ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLAROR', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 ) THEN
 | 
						|
         NXFRM = M
 | 
						|
      ELSE
 | 
						|
         NXFRM = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize A to the identity matrix if desired
 | 
						|
*
 | 
						|
      IF( LSAME( INIT, 'I' ) )
 | 
						|
     $   CALL CLASET( 'Full', M, N, CZERO, CONE, A, LDA )
 | 
						|
*
 | 
						|
*     If no rotation possible, still multiply by
 | 
						|
*     a random complex number from the circle |x| = 1
 | 
						|
*
 | 
						|
*      2)      Compute Rotation by computing Householder
 | 
						|
*              Transformations H(2), H(3), ..., H(n).  Note that the
 | 
						|
*              order in which they are computed is irrelevant.
 | 
						|
*
 | 
						|
      DO 40 J = 1, NXFRM
 | 
						|
         X( J ) = CZERO
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      DO 60 IXFRM = 2, NXFRM
 | 
						|
         KBEG = NXFRM - IXFRM + 1
 | 
						|
*
 | 
						|
*        Generate independent normal( 0, 1 ) random numbers
 | 
						|
*
 | 
						|
         DO 50 J = KBEG, NXFRM
 | 
						|
            X( J ) = CLARND( 3, ISEED )
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*        Generate a Householder transformation from the random vector X
 | 
						|
*
 | 
						|
         XNORM = SCNRM2( IXFRM, X( KBEG ), 1 )
 | 
						|
         XABS = ABS( X( KBEG ) )
 | 
						|
         IF( XABS.NE.CZERO ) THEN
 | 
						|
            CSIGN = X( KBEG ) / XABS
 | 
						|
         ELSE
 | 
						|
            CSIGN = CONE
 | 
						|
         END IF
 | 
						|
         XNORMS = CSIGN*XNORM
 | 
						|
         X( NXFRM+KBEG ) = -CSIGN
 | 
						|
         FACTOR = XNORM*( XNORM+XABS )
 | 
						|
         IF( ABS( FACTOR ).LT.TOOSML ) THEN
 | 
						|
            INFO = 1
 | 
						|
            CALL XERBLA( 'CLAROR', -INFO )
 | 
						|
            RETURN
 | 
						|
         ELSE
 | 
						|
            FACTOR = ONE / FACTOR
 | 
						|
         END IF
 | 
						|
         X( KBEG ) = X( KBEG ) + XNORMS
 | 
						|
*
 | 
						|
*        Apply Householder transformation to A
 | 
						|
*
 | 
						|
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*           Apply H(k) on the left of A
 | 
						|
*
 | 
						|
            CALL CGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA,
 | 
						|
     $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
 | 
						|
            CALL CGERC( IXFRM, N, -CMPLX( FACTOR ), X( KBEG ), 1,
 | 
						|
     $                  X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN
 | 
						|
*
 | 
						|
*           Apply H(k)* (or H(k)') on the right of A
 | 
						|
*
 | 
						|
            IF( ITYPE.EQ.4 ) THEN
 | 
						|
               CALL CLACGV( IXFRM, X( KBEG ), 1 )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            CALL CGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA,
 | 
						|
     $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
 | 
						|
            CALL CGERC( M, IXFRM, -CMPLX( FACTOR ), X( 2*NXFRM+1 ), 1,
 | 
						|
     $                  X( KBEG ), 1, A( 1, KBEG ), LDA )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
      X( 1 ) = CLARND( 3, ISEED )
 | 
						|
      XABS = ABS( X( 1 ) )
 | 
						|
      IF( XABS.NE.ZERO ) THEN
 | 
						|
         CSIGN = X( 1 ) / XABS
 | 
						|
      ELSE
 | 
						|
         CSIGN = CONE
 | 
						|
      END IF
 | 
						|
      X( 2*NXFRM ) = CSIGN
 | 
						|
*
 | 
						|
*     Scale the matrix A by D.
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
 | 
						|
         DO 70 IROW = 1, M
 | 
						|
            CALL CSCAL( N, CONJG( X( NXFRM+IROW ) ), A( IROW, 1 ), LDA )
 | 
						|
   70    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
 | 
						|
         DO 80 JCOL = 1, N
 | 
						|
            CALL CSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
 | 
						|
   80    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.4 ) THEN
 | 
						|
         DO 90 JCOL = 1, N
 | 
						|
            CALL CSCAL( M, CONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 )
 | 
						|
   90    CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAROR
 | 
						|
*
 | 
						|
      END
 |