244 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			244 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZHPT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDC, N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its
 | 
						|
*> block L*D*L' or U*D*U' factorization and computes the residual
 | 
						|
*>    norm( C - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where C is the reconstructed matrix, EPS is the machine epsilon,
 | 
						|
*> L' is the conjugate transpose of L, and U' is the conjugate transpose
 | 
						|
*> of U.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          The original Hermitian matrix A, stored as a packed
 | 
						|
*>          triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          The factored form of the matrix A, stored as a packed
 | 
						|
*>          triangular matrix.  AFAC contains the block diagonal matrix D
 | 
						|
*>          and the multipliers used to obtain the factor L or U from the
 | 
						|
*>          block L*D*L' or U*D*U' factorization as computed by ZHPTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices from ZHPTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension (LDC,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C.  LDC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDC, N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, J, JC
 | 
						|
      DOUBLE PRECISION   ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHE, ZLANHP
 | 
						|
      EXTERNAL           LSAME, DLAMCH, ZLANHE, ZLANHP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLASET, ZLAVHP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DIMAG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine EPS and the norm of A.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
 | 
						|
*
 | 
						|
*     Check the imaginary parts of the diagonal elements and return with
 | 
						|
*     an error code if any are nonzero.
 | 
						|
*
 | 
						|
      JC = 1
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 10 J = 1, N
 | 
						|
            IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
 | 
						|
               RESID = ONE / EPS
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            JC = JC + J + 1
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 20 J = 1, N
 | 
						|
            IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
 | 
						|
               RESID = ONE / EPS
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
            JC = JC + N - J + 1
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize C to the identity matrix.
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
 | 
						|
*
 | 
						|
*     Call ZLAVHP to form the product D * U' (or D * L' ).
 | 
						|
*
 | 
						|
      CALL ZLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
 | 
						|
     $             LDC, INFO )
 | 
						|
*
 | 
						|
*     Call ZLAVHP again to multiply by U ( or L ).
 | 
						|
*
 | 
						|
      CALL ZLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
 | 
						|
     $             LDC, INFO )
 | 
						|
*
 | 
						|
*     Compute the difference  C - A .
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         JC = 0
 | 
						|
         DO 40 J = 1, N
 | 
						|
            DO 30 I = 1, J - 1
 | 
						|
               C( I, J ) = C( I, J ) - A( JC+I )
 | 
						|
   30       CONTINUE
 | 
						|
            C( J, J ) = C( J, J ) - DBLE( A( JC+J ) )
 | 
						|
            JC = JC + J
 | 
						|
   40    CONTINUE
 | 
						|
      ELSE
 | 
						|
         JC = 1
 | 
						|
         DO 60 J = 1, N
 | 
						|
            C( J, J ) = C( J, J ) - DBLE( A( JC ) )
 | 
						|
            DO 50 I = J + 1, N
 | 
						|
               C( I, J ) = C( I, J ) - A( JC+I-J )
 | 
						|
   50       CONTINUE
 | 
						|
            JC = JC + N - J + 1
 | 
						|
   60    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHPT01
 | 
						|
*
 | 
						|
      END
 |