557 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			557 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SCHKGT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
 | 
						|
*                          A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            TSTERR
 | 
						|
*       INTEGER            NN, NNS, NOUT
 | 
						|
*       REAL               THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            IWORK( * ), NSVAL( * ), NVAL( * )
 | 
						|
*       REAL               A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
 | 
						|
*      $                   X( * ), XACT( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SCHKGT tests SGTTRF, -TRS, -RFS, and -CON
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          The matrix types to be used for testing.  Matrices of type j
 | 
						|
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | 
						|
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER
 | 
						|
*>          The number of values of N contained in the vector NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NN)
 | 
						|
*>          The values of the matrix dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NNS
 | 
						|
*> \verbatim
 | 
						|
*>          NNS is INTEGER
 | 
						|
*>          The number of values of NRHS contained in the vector NSVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NSVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NSVAL is INTEGER array, dimension (NNS)
 | 
						|
*>          The values of the number of right hand sides NRHS.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is REAL
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSTERR
 | 
						|
*> \verbatim
 | 
						|
*>          TSTERR is LOGICAL
 | 
						|
*>          Flag that indicates whether error exits are to be tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (NMAX*4)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (NMAX*4)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (NMAX*NSMAX)
 | 
						|
*>          where NSMAX is the largest entry in NSVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (NMAX*NSMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is REAL array, dimension (NMAX*NSMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension
 | 
						|
*>                      (NMAX*max(3,NSMAX))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension
 | 
						|
*>                      (max(NMAX,2*NSMAX))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (2*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The unit number for output.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
 | 
						|
     $                   A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            TSTERR
 | 
						|
      INTEGER            NN, NNS, NOUT
 | 
						|
      REAL               THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            IWORK( * ), NSVAL( * ), NVAL( * )
 | 
						|
      REAL               A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
 | 
						|
     $                   X( * ), XACT( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
      INTEGER            NTYPES
 | 
						|
      PARAMETER          ( NTYPES = 12 )
 | 
						|
      INTEGER            NTESTS
 | 
						|
      PARAMETER          ( NTESTS = 7 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            TRFCON, ZEROT
 | 
						|
      CHARACTER          DIST, NORM, TRANS, TYPE
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
 | 
						|
     $                   K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
 | 
						|
     $                   NIMAT, NRHS, NRUN
 | 
						|
      REAL               AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
 | 
						|
     $                   RCONDO
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      CHARACTER          TRANSS( 3 )
 | 
						|
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | 
						|
      REAL               RESULT( NTESTS ), Z( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SASUM, SGET06, SLANGT
 | 
						|
      EXTERNAL           SASUM, SGET06, SLANGT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALAERH, ALAHD, ALASUM, SCOPY, SERRGE, SGET04,
 | 
						|
     $                   SGTCON, SGTRFS, SGTT01, SGTT02, SGTT05, SGTTRF,
 | 
						|
     $                   SGTTRS, SLACPY, SLAGTM, SLARNV, SLATB4, SLATMS,
 | 
						|
     $                   SSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, NUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
 | 
						|
     $                   'C' /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Single precision'
 | 
						|
      PATH( 2: 3 ) = 'GT'
 | 
						|
      NRUN = 0
 | 
						|
      NFAIL = 0
 | 
						|
      NERRS = 0
 | 
						|
      DO 10 I = 1, 4
 | 
						|
         ISEED( I ) = ISEEDY( I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Test the error exits
 | 
						|
*
 | 
						|
      IF( TSTERR )
 | 
						|
     $   CALL SERRGE( PATH, NOUT )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
      DO 110 IN = 1, NN
 | 
						|
*
 | 
						|
*        Do for each value of N in NVAL.
 | 
						|
*
 | 
						|
         N = NVAL( IN )
 | 
						|
         M = MAX( N-1, 0 )
 | 
						|
         LDA = MAX( 1, N )
 | 
						|
         NIMAT = NTYPES
 | 
						|
         IF( N.LE.0 )
 | 
						|
     $      NIMAT = 1
 | 
						|
*
 | 
						|
         DO 100 IMAT = 1, NIMAT
 | 
						|
*
 | 
						|
*           Do the tests only if DOTYPE( IMAT ) is true.
 | 
						|
*
 | 
						|
            IF( .NOT.DOTYPE( IMAT ) )
 | 
						|
     $         GO TO 100
 | 
						|
*
 | 
						|
*           Set up parameters with SLATB4.
 | 
						|
*
 | 
						|
            CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | 
						|
     $                   COND, DIST )
 | 
						|
*
 | 
						|
            ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
 | 
						|
            IF( IMAT.LE.6 ) THEN
 | 
						|
*
 | 
						|
*              Types 1-6:  generate matrices of known condition number.
 | 
						|
*
 | 
						|
               KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
 | 
						|
               SRNAMT = 'SLATMS'
 | 
						|
               CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
 | 
						|
     $                      ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
 | 
						|
     $                      INFO )
 | 
						|
*
 | 
						|
*              Check the error code from SLATMS.
 | 
						|
*
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', N, N, KL,
 | 
						|
     $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
                  GO TO 100
 | 
						|
               END IF
 | 
						|
               IZERO = 0
 | 
						|
*
 | 
						|
               IF( N.GT.1 ) THEN
 | 
						|
                  CALL SCOPY( N-1, AF( 4 ), 3, A, 1 )
 | 
						|
                  CALL SCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
 | 
						|
               END IF
 | 
						|
               CALL SCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Types 7-12:  generate tridiagonal matrices with
 | 
						|
*              unknown condition numbers.
 | 
						|
*
 | 
						|
               IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
 | 
						|
*
 | 
						|
*                 Generate a matrix with elements from [-1,1].
 | 
						|
*
 | 
						|
                  CALL SLARNV( 2, ISEED, N+2*M, A )
 | 
						|
                  IF( ANORM.NE.ONE )
 | 
						|
     $               CALL SSCAL( N+2*M, ANORM, A, 1 )
 | 
						|
               ELSE IF( IZERO.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Reuse the last matrix by copying back the zeroed out
 | 
						|
*                 elements.
 | 
						|
*
 | 
						|
                  IF( IZERO.EQ.1 ) THEN
 | 
						|
                     A( N ) = Z( 2 )
 | 
						|
                     IF( N.GT.1 )
 | 
						|
     $                  A( 1 ) = Z( 3 )
 | 
						|
                  ELSE IF( IZERO.EQ.N ) THEN
 | 
						|
                     A( 3*N-2 ) = Z( 1 )
 | 
						|
                     A( 2*N-1 ) = Z( 2 )
 | 
						|
                  ELSE
 | 
						|
                     A( 2*N-2+IZERO ) = Z( 1 )
 | 
						|
                     A( N-1+IZERO ) = Z( 2 )
 | 
						|
                     A( IZERO ) = Z( 3 )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              If IMAT > 7, set one column of the matrix to 0.
 | 
						|
*
 | 
						|
               IF( .NOT.ZEROT ) THEN
 | 
						|
                  IZERO = 0
 | 
						|
               ELSE IF( IMAT.EQ.8 ) THEN
 | 
						|
                  IZERO = 1
 | 
						|
                  Z( 2 ) = A( N )
 | 
						|
                  A( N ) = ZERO
 | 
						|
                  IF( N.GT.1 ) THEN
 | 
						|
                     Z( 3 ) = A( 1 )
 | 
						|
                     A( 1 ) = ZERO
 | 
						|
                  END IF
 | 
						|
               ELSE IF( IMAT.EQ.9 ) THEN
 | 
						|
                  IZERO = N
 | 
						|
                  Z( 1 ) = A( 3*N-2 )
 | 
						|
                  Z( 2 ) = A( 2*N-1 )
 | 
						|
                  A( 3*N-2 ) = ZERO
 | 
						|
                  A( 2*N-1 ) = ZERO
 | 
						|
               ELSE
 | 
						|
                  IZERO = ( N+1 ) / 2
 | 
						|
                  DO 20 I = IZERO, N - 1
 | 
						|
                     A( 2*N-2+I ) = ZERO
 | 
						|
                     A( N-1+I ) = ZERO
 | 
						|
                     A( I ) = ZERO
 | 
						|
   20             CONTINUE
 | 
						|
                  A( 3*N-2 ) = ZERO
 | 
						|
                  A( 2*N-1 ) = ZERO
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*+    TEST 1
 | 
						|
*           Factor A as L*U and compute the ratio
 | 
						|
*              norm(L*U - A) / (n * norm(A) * EPS )
 | 
						|
*
 | 
						|
            CALL SCOPY( N+2*M, A, 1, AF, 1 )
 | 
						|
            SRNAMT = 'SGTTRF'
 | 
						|
            CALL SGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*           Check error code from SGTTRF.
 | 
						|
*
 | 
						|
            IF( INFO.NE.IZERO )
 | 
						|
     $         CALL ALAERH( PATH, 'SGTTRF', INFO, IZERO, ' ', N, N, 1,
 | 
						|
     $                      1, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
            TRFCON = INFO.NE.0
 | 
						|
*
 | 
						|
            CALL SGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
 | 
						|
     $                   AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
 | 
						|
     $                   RWORK, RESULT( 1 ) )
 | 
						|
*
 | 
						|
*           Print the test ratio if it is .GE. THRESH.
 | 
						|
*
 | 
						|
            IF( RESULT( 1 ).GE.THRESH ) THEN
 | 
						|
               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $            CALL ALAHD( NOUT, PATH )
 | 
						|
               WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
 | 
						|
               NFAIL = NFAIL + 1
 | 
						|
            END IF
 | 
						|
            NRUN = NRUN + 1
 | 
						|
*
 | 
						|
            DO 50 ITRAN = 1, 2
 | 
						|
               TRANS = TRANSS( ITRAN )
 | 
						|
               IF( ITRAN.EQ.1 ) THEN
 | 
						|
                  NORM = 'O'
 | 
						|
               ELSE
 | 
						|
                  NORM = 'I'
 | 
						|
               END IF
 | 
						|
               ANORM = SLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
 | 
						|
*
 | 
						|
               IF( .NOT.TRFCON ) THEN
 | 
						|
*
 | 
						|
*                 Use SGTTRS to solve for one column at a time of inv(A)
 | 
						|
*                 or inv(A^T), computing the maximum column sum as we
 | 
						|
*                 go.
 | 
						|
*
 | 
						|
                  AINVNM = ZERO
 | 
						|
                  DO 40 I = 1, N
 | 
						|
                     DO 30 J = 1, N
 | 
						|
                        X( J ) = ZERO
 | 
						|
   30                CONTINUE
 | 
						|
                     X( I ) = ONE
 | 
						|
                     CALL SGTTRS( TRANS, N, 1, AF, AF( M+1 ),
 | 
						|
     $                            AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | 
						|
     $                            LDA, INFO )
 | 
						|
                     AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
 | 
						|
   40             CONTINUE
 | 
						|
*
 | 
						|
*                 Compute RCONDC = 1 / (norm(A) * norm(inv(A))
 | 
						|
*
 | 
						|
                  IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
                     RCONDC = ONE
 | 
						|
                  ELSE
 | 
						|
                     RCONDC = ( ONE / ANORM ) / AINVNM
 | 
						|
                  END IF
 | 
						|
                  IF( ITRAN.EQ.1 ) THEN
 | 
						|
                     RCONDO = RCONDC
 | 
						|
                  ELSE
 | 
						|
                     RCONDI = RCONDC
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  RCONDC = ZERO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*+    TEST 7
 | 
						|
*              Estimate the reciprocal of the condition number of the
 | 
						|
*              matrix.
 | 
						|
*
 | 
						|
               SRNAMT = 'SGTCON'
 | 
						|
               CALL SGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
 | 
						|
     $                      AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
 | 
						|
     $                      IWORK( N+1 ), INFO )
 | 
						|
*
 | 
						|
*              Check error code from SGTCON.
 | 
						|
*
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            CALL ALAERH( PATH, 'SGTCON', INFO, 0, NORM, N, N, -1,
 | 
						|
     $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
 | 
						|
*
 | 
						|
               RESULT( 7 ) = SGET06( RCOND, RCONDC )
 | 
						|
*
 | 
						|
*              Print the test ratio if it is .GE. THRESH.
 | 
						|
*
 | 
						|
               IF( RESULT( 7 ).GE.THRESH ) THEN
 | 
						|
                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $               CALL ALAHD( NOUT, PATH )
 | 
						|
                  WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
 | 
						|
     $               RESULT( 7 )
 | 
						|
                  NFAIL = NFAIL + 1
 | 
						|
               END IF
 | 
						|
               NRUN = NRUN + 1
 | 
						|
   50       CONTINUE
 | 
						|
*
 | 
						|
*           Skip the remaining tests if the matrix is singular.
 | 
						|
*
 | 
						|
            IF( TRFCON )
 | 
						|
     $         GO TO 100
 | 
						|
*
 | 
						|
            DO 90 IRHS = 1, NNS
 | 
						|
               NRHS = NSVAL( IRHS )
 | 
						|
*
 | 
						|
*              Generate NRHS random solution vectors.
 | 
						|
*
 | 
						|
               IX = 1
 | 
						|
               DO 60 J = 1, NRHS
 | 
						|
                  CALL SLARNV( 2, ISEED, N, XACT( IX ) )
 | 
						|
                  IX = IX + LDA
 | 
						|
   60          CONTINUE
 | 
						|
*
 | 
						|
               DO 80 ITRAN = 1, 3
 | 
						|
                  TRANS = TRANSS( ITRAN )
 | 
						|
                  IF( ITRAN.EQ.1 ) THEN
 | 
						|
                     RCONDC = RCONDO
 | 
						|
                  ELSE
 | 
						|
                     RCONDC = RCONDI
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Set the right hand side.
 | 
						|
*
 | 
						|
                  CALL SLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
 | 
						|
     $                         A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
 | 
						|
*
 | 
						|
*+    TEST 2
 | 
						|
*                 Solve op(A) * X = B and compute the residual.
 | 
						|
*
 | 
						|
                  CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | 
						|
                  SRNAMT = 'SGTTRS'
 | 
						|
                  CALL SGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
 | 
						|
     $                         AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
 | 
						|
     $                         LDA, INFO )
 | 
						|
*
 | 
						|
*                 Check error code from SGTTRS.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.0 )
 | 
						|
     $               CALL ALAERH( PATH, 'SGTTRS', INFO, 0, TRANS, N, N,
 | 
						|
     $                            -1, -1, NRHS, IMAT, NFAIL, NERRS,
 | 
						|
     $                            NOUT )
 | 
						|
*
 | 
						|
                  CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | 
						|
                  CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
 | 
						|
     $                         X, LDA, WORK, LDA, RESULT( 2 ) )
 | 
						|
*
 | 
						|
*+    TEST 3
 | 
						|
*                 Check solution from generated exact solution.
 | 
						|
*
 | 
						|
                  CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                         RESULT( 3 ) )
 | 
						|
*
 | 
						|
*+    TESTS 4, 5, and 6
 | 
						|
*                 Use iterative refinement to improve the solution.
 | 
						|
*
 | 
						|
                  SRNAMT = 'SGTRFS'
 | 
						|
                  CALL SGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
 | 
						|
     $                         AF, AF( M+1 ), AF( N+M+1 ),
 | 
						|
     $                         AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
 | 
						|
     $                         RWORK, RWORK( NRHS+1 ), WORK,
 | 
						|
     $                         IWORK( N+1 ), INFO )
 | 
						|
*
 | 
						|
*                 Check error code from SGTRFS.
 | 
						|
*
 | 
						|
                  IF( INFO.NE.0 )
 | 
						|
     $               CALL ALAERH( PATH, 'SGTRFS', INFO, 0, TRANS, N, N,
 | 
						|
     $                            -1, -1, NRHS, IMAT, NFAIL, NERRS,
 | 
						|
     $                            NOUT )
 | 
						|
*
 | 
						|
                  CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | 
						|
     $                         RESULT( 4 ) )
 | 
						|
                  CALL SGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
 | 
						|
     $                         B, LDA, X, LDA, XACT, LDA, RWORK,
 | 
						|
     $                         RWORK( NRHS+1 ), RESULT( 5 ) )
 | 
						|
*
 | 
						|
*                 Print information about the tests that did not pass
 | 
						|
*                 the threshold.
 | 
						|
*
 | 
						|
                  DO 70 K = 2, 6
 | 
						|
                     IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                     CALL ALAHD( NOUT, PATH )
 | 
						|
                        WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
 | 
						|
     $                     K, RESULT( K )
 | 
						|
                        NFAIL = NFAIL + 1
 | 
						|
                     END IF
 | 
						|
   70             CONTINUE
 | 
						|
                  NRUN = NRUN + 5
 | 
						|
   80          CONTINUE
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
  100    CONTINUE
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
*     Print a summary of the results.
 | 
						|
*
 | 
						|
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | 
						|
*
 | 
						|
 9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
 | 
						|
     $      ') = ', G12.5 )
 | 
						|
 9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
 | 
						|
     $      I2, ', test(', I2, ') = ', G12.5 )
 | 
						|
 9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
 | 
						|
     $      ', test(', I2, ') = ', G12.5 )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SCHKGT
 | 
						|
*
 | 
						|
      END
 |