177 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPTT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), DF( * )
 | 
						|
*       COMPLEX            E( * ), EF( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
 | 
						|
*> factorization and computes the residual
 | 
						|
*>    norm(L*D*L' - A) / ( n * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGTER
 | 
						|
*>          The order of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DF
 | 
						|
*> \verbatim
 | 
						|
*>          DF is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the factor L from the L*D*L'
 | 
						|
*>          factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] EF
 | 
						|
*> \verbatim
 | 
						|
*>          EF is COMPLEX array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of the factor L from the
 | 
						|
*>          L*D*L' factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          norm(L*D*L' - A) / (n * norm(A) * EPS)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), DF( * )
 | 
						|
      COMPLEX            E( * ), EF( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      REAL               ANORM, EPS
 | 
						|
      COMPLEX            DE
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CONJG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Construct the difference L*D*L' - A.
 | 
						|
*
 | 
						|
      WORK( 1 ) = DF( 1 ) - D( 1 )
 | 
						|
      DO 10 I = 1, N - 1
 | 
						|
         DE = DF( I )*EF( I )
 | 
						|
         WORK( N+I ) = DE - E( I )
 | 
						|
         WORK( 1+I ) = DE*CONJG( EF( I ) ) + DF( I+1 ) - D( I+1 )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Compute the 1-norms of the tridiagonal matrices A and WORK.
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         ANORM = D( 1 )
 | 
						|
         RESID = ABS( WORK( 1 ) )
 | 
						|
      ELSE
 | 
						|
         ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) )
 | 
						|
         RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ),
 | 
						|
     $           ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) )
 | 
						|
         DO 20 I = 2, N - 1
 | 
						|
            ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) )
 | 
						|
            RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+
 | 
						|
     $              ABS( WORK( N+I ) ) )
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm(L*D*L' - A) / (n * norm(A) * EPS)
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPTT01
 | 
						|
*
 | 
						|
      END
 |