397 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGSVTS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGSVTS( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
 | 
						|
*                          LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK,
 | 
						|
*                          LWORK, RWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   ALPHA( * ), BETA( * ), RESULT( 6 ), RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | 
						|
*      $                   BF( LDB, * ), Q( LDQ, * ), R( LDR, * ),
 | 
						|
*      $                   U( LDU, * ), V( LDV, * ), WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGSVTS tests ZGGSVD, which computes the GSVD of an M-by-N matrix A
 | 
						|
*> and a P-by-N matrix B:
 | 
						|
*>              U'*A*Q = D1*R and V'*B*Q = D2*R.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>          The number of rows of the matrix B.  P >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,M)
 | 
						|
*>          The M-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          Details of the GSVD of A and B, as returned by ZGGSVD,
 | 
						|
*>          see ZGGSVD for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A and AF.
 | 
						|
*>          LDA >= max( 1,M ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,P)
 | 
						|
*>          On entry, the P-by-N matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BF
 | 
						|
*> \verbatim
 | 
						|
*>          BF is COMPLEX*16 array, dimension (LDB,N)
 | 
						|
*>          Details of the GSVD of A and B, as returned by ZGGSVD,
 | 
						|
*>          see ZGGSVD for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the arrays B and BF.
 | 
						|
*>          LDB >= max(1,P).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is COMPLEX*16 array, dimension(LDU,M)
 | 
						|
*>          The M by M unitary matrix U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U. LDU >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX*16 array, dimension(LDV,M)
 | 
						|
*>          The P by P unitary matrix V.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V. LDV >= max(1,P).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX*16 array, dimension(LDQ,N)
 | 
						|
*>          The N by N unitary matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q. LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>
 | 
						|
*>          The generalized singular value pairs of A and B, the
 | 
						|
*>          ``diagonal'' matrices D1 and D2 are constructed from
 | 
						|
*>          ALPHA and BETA, see subroutine ZGGSVD for details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is COMPLEX*16 array, dimension(LDQ,N)
 | 
						|
*>          The upper triangular matrix R.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDR
 | 
						|
*> \verbatim
 | 
						|
*>          LDR is INTEGER
 | 
						|
*>          The leading dimension of the array R. LDR >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK,
 | 
						|
*>          LWORK >= max(M,P,N)*max(M,P,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (max(M,P,N))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (5)
 | 
						|
*>          The test ratios:
 | 
						|
*>          RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP)
 | 
						|
*>          RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP)
 | 
						|
*>          RESULT(3) = norm( I - U'*U ) / ( M*ULP )
 | 
						|
*>          RESULT(4) = norm( I - V'*V ) / ( P*ULP )
 | 
						|
*>          RESULT(5) = norm( I - Q'*Q ) / ( N*ULP )
 | 
						|
*>          RESULT(6) = 0        if ALPHA is in decreasing order;
 | 
						|
*>                    = ULPINV   otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGSVTS( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
 | 
						|
     $                   LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK,
 | 
						|
     $                   LWORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   ALPHA( * ), BETA( * ), RESULT( 6 ), RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | 
						|
     $                   BF( LDB, * ), Q( LDQ, * ), R( LDR, * ),
 | 
						|
     $                   U( LDU, * ), V( LDV, * ), WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, J, K, L
 | 
						|
      DOUBLE PRECISION   ANORM, BNORM, RESID, TEMP, ULP, ULPINV, UNFL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHE
 | 
						|
      EXTERNAL           DLAMCH, ZLANGE, ZLANHE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, ZGEMM, ZGGSVD, ZHERK, ZLACPY, ZLASET
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Copy the matrix A to the array AF.
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
 | 
						|
      CALL ZLACPY( 'Full', P, N, B, LDB, BF, LDB )
 | 
						|
*
 | 
						|
      ANORM = MAX( ZLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
 | 
						|
      BNORM = MAX( ZLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
 | 
						|
*
 | 
						|
*     Factorize the matrices A and B in the arrays AF and BF.
 | 
						|
*
 | 
						|
      CALL ZGGSVD( 'U', 'V', 'Q', M, N, P, K, L, AF, LDA, BF, LDB,
 | 
						|
     $             ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, RWORK,
 | 
						|
     $             IWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy R
 | 
						|
*
 | 
						|
      DO 20 I = 1, MIN( K+L, M )
 | 
						|
         DO 10 J = I, K + L
 | 
						|
            R( I, J ) = AF( I, N-K-L+J )
 | 
						|
   10    CONTINUE
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      IF( M-K-L.LT.0 ) THEN
 | 
						|
         DO 40 I = M + 1, K + L
 | 
						|
            DO 30 J = I, K + L
 | 
						|
               R( I, J ) = BF( I-K, N-K-L+J )
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute A:= U'*A*Q - D1*R
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'No transpose', 'No transpose', M, N, N, CONE, A, LDA,
 | 
						|
     $            Q, LDQ, CZERO, WORK, LDA )
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M, CONE,
 | 
						|
     $            U, LDU, WORK, LDA, CZERO, A, LDA )
 | 
						|
*
 | 
						|
      DO 60 I = 1, K
 | 
						|
         DO 50 J = I, K + L
 | 
						|
            A( I, N-K-L+J ) = A( I, N-K-L+J ) - R( I, J )
 | 
						|
   50    CONTINUE
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
      DO 80 I = K + 1, MIN( K+L, M )
 | 
						|
         DO 70 J = I, K + L
 | 
						|
            A( I, N-K-L+J ) = A( I, N-K-L+J ) - ALPHA( I )*R( I, J )
 | 
						|
   70    CONTINUE
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm( U'*A*Q - D1*R ) / ( MAX(1,M,N)*norm(A)*ULP ) .
 | 
						|
*
 | 
						|
      RESID = ZLANGE( '1', M, N, A, LDA, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M, N ) ) ) / ANORM ) /
 | 
						|
     $                 ULP
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute B := V'*B*Q - D2*R
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'No transpose', 'No transpose', P, N, N, CONE, B, LDB,
 | 
						|
     $            Q, LDQ, CZERO, WORK, LDB )
 | 
						|
*
 | 
						|
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, N, P, CONE,
 | 
						|
     $            V, LDV, WORK, LDB, CZERO, B, LDB )
 | 
						|
*
 | 
						|
      DO 100 I = 1, L
 | 
						|
         DO 90 J = I, L
 | 
						|
            B( I, N-L+J ) = B( I, N-L+J ) - BETA( K+I )*R( K+I, K+J )
 | 
						|
   90    CONTINUE
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
*     Compute norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP ) .
 | 
						|
*
 | 
						|
      RESID = ZLANGE( '1', P, N, B, LDB, RWORK )
 | 
						|
      IF( BNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 2 ) = ( ( RESID / DBLE( MAX( 1, P, N ) ) ) / BNORM ) /
 | 
						|
     $                 ULP
 | 
						|
      ELSE
 | 
						|
         RESULT( 2 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute I - U'*U
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', M, M, CZERO, CONE, WORK, LDQ )
 | 
						|
      CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, U, LDU,
 | 
						|
     $            ONE, WORK, LDU )
 | 
						|
*
 | 
						|
*     Compute norm( I - U'*U ) / ( M * ULP ) .
 | 
						|
*
 | 
						|
      RESID = ZLANHE( '1', 'Upper', M, WORK, LDU, RWORK )
 | 
						|
      RESULT( 3 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / ULP
 | 
						|
*
 | 
						|
*     Compute I - V'*V
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', P, P, CZERO, CONE, WORK, LDV )
 | 
						|
      CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, V, LDV,
 | 
						|
     $            ONE, WORK, LDV )
 | 
						|
*
 | 
						|
*     Compute norm( I - V'*V ) / ( P * ULP ) .
 | 
						|
*
 | 
						|
      RESID = ZLANHE( '1', 'Upper', P, WORK, LDV, RWORK )
 | 
						|
      RESULT( 4 ) = ( RESID / DBLE( MAX( 1, P ) ) ) / ULP
 | 
						|
*
 | 
						|
*     Compute I - Q'*Q
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', N, N, CZERO, CONE, WORK, LDQ )
 | 
						|
      CALL ZHERK( 'Upper', 'Conjugate transpose', N, N, -ONE, Q, LDQ,
 | 
						|
     $            ONE, WORK, LDQ )
 | 
						|
*
 | 
						|
*     Compute norm( I - Q'*Q ) / ( N * ULP ) .
 | 
						|
*
 | 
						|
      RESID = ZLANHE( '1', 'Upper', N, WORK, LDQ, RWORK )
 | 
						|
      RESULT( 5 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / ULP
 | 
						|
*
 | 
						|
*     Check sorting
 | 
						|
*
 | 
						|
      CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
 | 
						|
      DO 110 I = K + 1, MIN( K+L, M )
 | 
						|
         J = IWORK( I )
 | 
						|
         IF( I.NE.J ) THEN
 | 
						|
            TEMP = RWORK( I )
 | 
						|
            RWORK( I ) = RWORK( J )
 | 
						|
            RWORK( J ) = TEMP
 | 
						|
         END IF
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
      RESULT( 6 ) = ZERO
 | 
						|
      DO 120 I = K + 1, MIN( K+L, M ) - 1
 | 
						|
         IF( RWORK( I ).LT.RWORK( I+1 ) )
 | 
						|
     $      RESULT( 6 ) = ULPINV
 | 
						|
  120 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGSVTS
 | 
						|
*
 | 
						|
      END
 |